Page 5 of 7
Journal of the American Chemical Society
(3) (a) Jones, W. D. Dalton Trans. 2003, 3991–3995. (b) Amii, H.;
110 min) must be introduced in the last stage of synthesis,
precursors of 18Fꢀlabeled PET probes are generally prepared
via a different synthetic route from that of the nonꢀradioactive
19Fꢀcontaining compounds. Our defluoroborylation approach
that enables the twoꢀstep preparation of precursors will faciliꢀ
tate the development of useful 18Fꢀlabeled PET probes for the
diagnosis of various diseases and evaluation of drug candiꢀ
dates in the early stages of drug development.1c,8,36
Uneyama, K. Chem. Rev. 2009, 109, 2119–2183. (c) Hughes, R. P.
Eur. J. Inorg. Chem. 2009, 4591–4606. (d) Ahrens, T.; Kohlmann, J.;
Ahrens, M.; Braun, T. Chem. Rev. 2015, 115, 931–972.
(4) (a) Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36,
255–263. (b) O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308–319.
(5) Clot, E.; Eisenstein, O.; Jasim, N.; Macgregor, S. A.; McGrady,
J. E.; Perutz, R. N. Acc. Chem. Res. 2011, 44, 333–348.
(6) Hall, D. G. In Boronic Acids: Preparation and Applications in
Organic Synthesis, Medicine and Materials, 2nd ed.; Hall, D. G. Ed.;
WileyꢀVCH: Weinheim, 2011; Vol. 1, pp 1–134.
(7) Tredwell, M.; Preshlock, S. M.; Taylor, N. J.; Gruber, S.;
Huiban, M.; Passchier, J.; Mercier, J.; Génicot, C.; Gouverneur, V.
Angew. Chem., Int. Ed. 2014, 53, 7751–7755.
1
2
3
4
5
6
7
8
CONCLUSIONS
9
We have developed an efficient synthetic method for
borylarenes from fluoroarenes via Ni/Cuꢀcatalyzed C–F bond
cleavage. In combination with versatile borylarene transforꢀ
mations, this method has enabled a variety of formal C–F
bond functionalizations of a fluoroarene, involving formation
of C–C, C–O, C–I, and C–N bonds. The twoꢀstep isotopeꢀ
exchange of 19Fꢀ to 18Fꢀfluoroarene has also been achieved,
enabling expeditious preparation of 18Fꢀlabeled PET probes.
Further investigations, including detailed mechanistic studies,
expansion of the substrate scope, and application to PET imagꢀ
ing research, are currently underway in our group.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(8) (a) Phelps, M. E. Ed.; PET: Molecular Imaging and its Biologi-
cal Applications, Springer: New York, 2004. (b) Ametamey, S. M.;
Honer, M.; Schubiger, P. A.; Chem. Rev. 2008, 108, 1501–1516. (c)
Miller, P. J.; Ni. J. Long, R. Vilar, A. D. Gee, Angew. Chem., Int. Ed.
2008, 47, 8998–9033. (d) Luthra, S. K.; Robins, E. G. In Fluorine in
Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects
to Clinical Applications; Gouverneur, V.; Müller, K., Ed.; Imperial
Collage Press: London, 2012; pp 383–460. (e) Tredwell, M.; Gouverꢀ
neur, V. Angew. Chem., Int. Ed. 2012, 51, 11426–11437. (f) Långꢀ
ström, B.; Karimi, F.; Watanabe, Y. J. Labelled Compd. Radiopharm.
2013, 56, 251–262. (g) Suzuki, M.; Doi, H.; Koyama, H.; Zhang, Z.;
Hosoya, T.; Onoe, H.; Watanabe, Y. Chem. Rec. 2014, 14, 516–541.
(h) Brooks, A. F.; Topczewski, J. J.; Ichiishi, N.; Sanford, M. S.;
Scott, P. J. Chem. Sci. 2014, 5, 4545–4553. (i) Doi, H. J. Labelled
Compd. Radiopharm. 2015, 58, 73–85.
(9) This work was presented at the OMCOSꢀ18, Sitges (June 28–
July 2, 2015). At the same conference, R. Martin and coꢀworkers
described a related Niꢀcatalyzed borylation of fluoroarenes via oxidaꢀ
tive addition of C–F bond to Ni(0) complex. See: Liu, X.ꢀW.; Ecꢀ
havarren, J.; Zarate, C.; Martin, R. J. Am. Chem. Soc. 2015, 137,
12470–12473.
(10) (a) Lindup, R. J.; Marder, T. B.; Perutz, R. N.; Whitwood, A.
C.; Chem. Commun. 2007, 3664–3666. (b) Braun, T.; Salomon, M.
A.; Altenhöner, K.; Teltewskoi, M.; Hinze, S. Angew. Chem., Int. Ed.
2009, 48, 1818–1822. (c) Teltewskoi, M.; Panetier, J. A.; Macgregor,
S. A.; Braun, T. Angew. Chem., Int. Ed. 2010, 49, 3947–3951. (d)
Teltewskoi, M.; Kalläne, S. I.; Braun, T.; Herrmann, R. Eur. J. Inorg.
Chem. 2013, 5762–5768. (e) Kalläne, S. I.; Braun, T.; Braun, B.;
Mebs, S. Dalton Trans. 2014, 43, 6786–6801. (f) Kalläne, S. I.;
Braun, T. Angew. Chem., Int. Ed. 2014, 53, 9311–9315. (g) Kalläne,
S. I.; Teltewskoi, M.; Braun, T.; Braun, B. Organometallics 2015, 34,
1156–1169. (h) Guo, W.ꢀH.; Min, Q.ꢀQ.; Gu, J.ꢀW.; Zhang, X. An-
gew. Chem., Int. Ed. 2015, 54, 9075–9078.
ASSOCIATED CONTENT
Supporting Information
Experimental procedures, characterization for new compounds
including copies of NMR spectra, and HPLC chromatograms for
characterization of [18F]-1w. This material is available free of
AUTHOR INFORMATION
Corresponding Authors
*takashi.niwa@riken.jp
*takamitsu.hosoya@riken.jp
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This research was supported by JSPS KAKENHI Grant Number
15K05509 and the Incentive Research Grant from RIKEN (T.N.).
The authors thank Dr. Suguru Yoshida (Tokyo Medical and Denꢀ
tal University) for the helpful discussions, Mr. Masahiro Kuꢀ
rahashi (Sumitomo Heavy Industry Accelerator Service Ltd.) for
operating the cyclotron, and KANEKA Co. for their generous gift
(11) C–F bond cleavage of fluorobenzene to afford borylbenzene
(10% yield) was achieved by using boryllithium species. See: Segaꢀ
wa, Y.; Suzuki, Y.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc.
2008, 130, 16069–16079.
of
tertꢀbutyl
(3R,5S)ꢀ6ꢀhydroxyꢀ3,5ꢀOꢀisopropylideneꢀ3,5ꢀ
(12) For selected examples, see: (a) Kiso, Y.; Tamao, K.; Kumada,
M. J. Organomet. Chem. 1973, 50, C12–C14. (b) Böhm, V. P. W.;
Gstöttmayr, C. W. K.; Weskamp, T.; Herrmann, W. A. Angew.
Chem., Int. Ed. 2001, 40, 3387–3389. (c) Mongin, F.; Mojovic, L.;
Guillamet, B.; Trécourt, F.; Quéguiner, G. J. Org. Chem. 2002, 67,
8991–8994. (d) Lamm, K.; Stollenz, M.; Meier, M.; Görls, H.; Walꢀ
ther, D. J. Organomet. Chem. 2003, 681, 24–36. (e) Dankwardt, J. J.
Organomet. Chem. 2005, 690, 932–938. (f) Saeki, T.; Takashima, Y.;
Tamao K. Synlett 2005, 1771–1774. (g) Ackermann, L.; Born, R.;
Spatz, J. H.; Meyer, D. Angew. Chem., Int. Ed. 2005, 44, 7216–7219.
(h) Yoshikai, N.; Mashima, H; Nakamura, E. J. Am. Chem. Soc. 2005,
127, 17978–17979. (i) Inamoto, K.; Kuroda, J.; Sakamoto, T.; Hiroya,
K. Synthesis 2007, 2853–2861. (j) Yoshikai, N.; Matsuda, H; Nakaꢀ
mura, E. J. Am. Chem. Soc. 2009, 131, 9590–9599. (k) Xie, L.ꢀG.;
Wang, Z.ꢀX. Chem. Eur. J. 2010, 16, 10332–10336. (l) Ackermann,
L.; Wechsler, C.; Kapdi, A. R.; Althammer, A. Synlett 2010, 294–
298. (m) Guo, W.ꢀJ.; Wang, Z.ꢀX. J. Org. Chem. 2013, 78, 1054–
1061. (n) Wu, D.; Wang, Z.ꢀX. Org. Biomol. Chem. 2014, 12, 6414–
6424.
dihydroxyhexanoate.
REFERENCES
(1) (a) Swallow, S. In Fluorine in Pharmaceutical and Medicinal
Chemistry: From Biophysical Aspects to Clinical Applications; Gouꢀ
verneur, V.; Müller, K., Ed.; Imperial Collage Press: London, 2012;
pp 141–174. (b) Müller, K.; Faeh, C.; Diederich, F. Science 2007,
317, 1881–1886. (c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverꢀ
neur, V. Chem. Soc. Rev. 2008, 37, 320–330. (d) Wang, J.; Sánchezꢀ
Roselló, M.; Aceña, J. L.; der Pozo, C.; Sorochinsky, A. E.; Fustero,
S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432–2506. (e)
Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell,
N. A. J. Med. Chem. DOI: 10.1021/acs.jmedchem.5b00258.
(2) (a) Furuya, T.; Klein, J. E. M. N.; Ritter, T. Synthesis 2010,
1804–1821. (b) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011,
473, 470–477. (c) Liang, T.; Neumann, C.; Ritter, T. Angew. Chem.,
Int. Ed. 2013, 52, 8214–8264. (d) Campbell, M. G.; Ritter, T. Org.
Process. Res. Dev. 2014, 18, 474–480. (e) Campbell, M. G.; Ritter, T.
Chem. Rev. 2015, 115, 612–633.
ACS Paragon Plus Environment