Published on Web 09/19/2007
An Expedient Formal Total Synthesis of (-)-Diazonamide A
via a Powerful, Stereoselective O-Aryl to C-Aryl Migration To
Form the C10 Quaternary Center
Chi-Ming Cheung, Frederick W. Goldberg, Philip Magnus,* Claire J. Russell,
Rachel Turnbull, and Vince Lynch†
Contribution from the Department of Chemistry and Biochemistry, UniVersity of Texas at Austin,
1 UniVersity Station A5300, Austin, Texas 78712-1167
Received July 3, 2007; E-mail: p.magnus@mail.utexas.edu
Abstract: During the course of studies on the synthesis of diazonamide A 1, an unusual O-aryl into C-aryl
rearrangement was discovered that allows partial control of the absolute stereochemistry of the C-10
quaternary stereogenic center. Treatment of 30 with TBAF/THF gave the O-tyrosine ethers 31 and 32
(1:1), which on heating each separately in chloroform at reflux rearranged to 33 and 34 in ratios of 84:16
and 56:44, respectively. This corresponds to a 70% yield of the correct C-10 stereoisomer 33 and a 30%
yield of the wrong C-10 stereoisomer 34. Attempts to convert 34 into 33 by ipso-protonation and equilibration
were unsuccessful. Confirmation of the stereochemical outcome of the rearrangement was obtained by
converting 33 into 37, an advanced intermediate in the first synthesis of diazonamide A by Nicolaou et al.
It was also found that the success of the above rearrangement is sensitive to the protecting group on both
the tryptophan nitrogen atom and the tyrosine nitrogen atom.
Introduction
of diazonamide A. In the first reported total synthesis of
diazonamide A 1 by the Nicolaou group, it was found that
treatment of 8 [1:1 mixture of epimers at C10 (diazonamide
Diazonamide A 1 was isolated from the colonial ascidian
Diazona angulata, collected from the ceilings of caves along
the northwest coast of Siquijor Island in the Philippines. It
exhibits potent in vitro activity against HCT-116 human colon
carcinoma and B-16 murine melanoma cancer cells (IC50 < 15
ng/mL). The original structure, as reported in 1991 by Fenical
and Clardy,1 was corrected in 2001 to 1 by Harran, Figure 1.2
While there has been a large number of research groups involved
in the total synthesis of diazonamide A,3a-k only the Nicolaou4a-d
and Harran5 groups have so far been successful.
Our original photo-Fries rearrangement strategy as applied
to the “old incorrect structure” converted 3 into 4 (76%), Scheme
1.6 Attempted use of this strategy on the “new correct structure”
required an aza photo-Fries rearrangement.7 In the event, it was
found that photolysis of 5 under a variety of conditions did not
give 6; only 5 was recovered unchanged. It was therefore
decided to pursue a different strategy that involved formation
of the C8-C10 bond by nucleophilic displacement of a leaving
group (LG) at C10 as depicted in 2, Figure 1. It was planned to
form the C16-C18 bond by a Suzuki coupling reaction.8
The most significant problem in the synthesis of diazonamide
A is the stereoselective formation of the crucial C10 quaternary
center. Scheme 2 summarizes the results that have addressed
this difficult problem, and subsequently resulted in the synthesis
(3) (a) Moody, C. J.; Doyle, K. J.; Elliott, M. C.; Mowlem, T. J. Pure Appl.
Chem. 1994, 66, 2107-2010. Moody, C. J.; Doyle, K. J.; Elliott, M. C.;
Mowlen, T. J. J. Chem. Soc., Perkin Trans. 1 1997, 2413-2419. Bagley,
M. C.; Hind, S. L.; Moody, C. J. Tetrahedron Lett. 2000, 41, 6897-6900.
Palmer, F. N.; Lach, F.; Poriel, C.; Pepper, A. G.; Bagley, M. C.; Slawin,
A. M. Z.; Moody, C. J. Org. Biomol. Chem. 2005, 3, 3805-3811. Davies,
J. R.; Kane, P. D.; Moody, C. J. J. Org. Chem. 2005, 70, 7305-7316.
Sperry, J.; Moody, C. J. Chem. Commun. 2006, 2397-2399. Lachia, M.;
Poriel, C.; Slawin, A. M. Z.; Moody, C. J. Chem. Commun. 2007, 286-
288. Poriel, C.; Lachia, M.; Wilson, C.; Davies, J. R.; Moody, C. J. J.
Org. Chem. 2007, 72, 2978-2987. (b) Konopelski, J. P.; Hottenroth, J.
M.; Oltra, H. M.; Veliz, E. A.; Yang, Z.-C. Synlett 1996, 609-611. (c)
Wipf, P.; Methot, J.-L. Org. Lett. 2001, 3, 1261-1264. (d) Vedejs, E.;
Wang, J. B. Org. Lett. 2000, 2, 1031-1032. Vedejs, E.; Barda, D. A. Org.
Lett. 2000, 2, 1033-1035. Vedejs, E.; Zajac, M. A. Org. Lett. 2001, 3,
2451-2454. Zajac, M. A.; Vedejs, E. Org. Lett. 2004, 6, 237-240. (e)
Fuerst, D. E.; Stoltz, B. M.; Wood, J. L. Org. Lett. 2000, 2, 3521-3523.
Sawada, T.; Fuerst, D. E.; Wood, J. L. Tetrahedron Lett. 2003, 44, 4919-
4921. (f) Feldman, K. S.; Eastman, K. J.; Lessene, G. Org. Lett. 2002, 4,
3525-3528. (g) Boto, A.; Ling, M.; Meek, G.; Pattenden, G. Tetrahedron
Lett. 1998, 39, 8167-8170. Booker, J. E. M.; Boto, A.; Churchill, G. H.;
Green, C. P.; Ling, M.; Meek, G.; Prabhakaran, J.; Sinclair, D.; Blake, A.
J.; Pattenden, G. Org. Biomol. Chem. 2006, 4, 4193-4205. (h) Chen, X.;
Esser, L.; Harran, P. G. Angew. Chem., Int. Ed. 2000, 39, 937-940. Li, J.;
Chen, X.; Burgett, A. W. G.; Harran, P. G. Angew. Chem., Int. Ed. 2001,
40, 2682-2685. Jeong, S.; Chen, X.; Harran, P. G. J. Org. Chem. 1998,
63, 8640-8641. (i) Nicolaou, K. C.; Snyder, S. A.; Simonsen, K. B.;
Koumbis, A. E. Angew. Chem., Int. Ed. 2000, 30, 3473-3478. Nicolaou,
K. C.; Snyder, S. A.; Giuseppone, N.; Huang, X.; Bella, M.; Reddy, M.
V.; Rao, P. B.; Koumbis, A. E.; Giannakakou, P.; O’Brate, A. J. Am. Chem.
Soc. 2004, 126, 10174-10182. Nicolaou, K. C.; Snyder, S. A.; Huang,
X.; Simonsen, K. B.; Koumbis, A. E.; Bigot, A. J. Am. Chem. Soc. 2004,
126, 10162-10173. (j) Magnus, P.; Kreisberg, J. D. Tetrahedron Lett. 1999,
40, 451-454. Chan, F.; Magnus, P.; McIver, E. G. Tetrahedron Lett. 2000,
41, 835-838. Magnus, P.; McIver, E. G. Tetrahedron Lett. 2000, 41, 831-
834. Kreisberg, J. D.; Magnus, P.; McIver, E. G. Tetrahedron Lett. 2001,
42, 627-629. Magnus, P.; Venable, J. D.; Shen, L.; Lynch, V. Tetrahedron
Lett. 2005, 46, 707-710. Magnus, P.; Turnbull, R. Tetrahedron Lett. 2006,
47, 6461-6464. (k) Ritter, T.; Carreira, E. M. Angew. Chem., Int. Ed. 2002,
41, 2489-2495.
† Author for inquiries concerning the X-ray data.
(1) Lindquist, N.; Fenical, W.; Van Duyne, G. D.; Clardy, J. J. Am. Chem.
Soc. 1991, 113, 2303-2304.
(2) Li, J.; Jeong, S.; Esser, L.; Harran, P. G. Angew. Chem., Int. Ed. 2001, 40,
4765-4770. Li, J.; Burgett, A. W. G.; Esser, L.; Amezcua, C.; Harran, P.
G. Angew. Chem., Int. Ed. 2001, 40, 4770-4773.
9
12320
J. AM. CHEM. SOC. 2007, 129, 12320-12327
10.1021/ja0744448 CCC: $37.00 © 2007 American Chemical Society