and metal-mediated cycloaddition.7-10 Each of these approaches
represents an important advance toward the objective of a
general method for the synthesis of pyridin-2(1H)-ones, how-
ever, some of them are still severely limited in their use by
their lack of generality, the harsh reaction conditions involved,
poor yields, a multistep procedure, or the formation of complex
mixtures of side products. In light of this, simple and efficient
synthetic protocols for the construction of more elaborate and
usefully functionalized pyridin-2(1H)-ones are still in demand.
On the other hand, the Vilsmeier-Haack reaction associated
with its mild reaction condition, commercial viability of the
reagents, and improved understanding of the reaction mechanism
has been widely used for the formylation of activated aromatic
compounds and carbonyl compounds.11 The versatile reactivity
of carbonyl compounds with halomethylene iminium salts and
a variety of cyclization reactions leading to heterocyclic
compounds induced by the Vilsmeier reagent have been well-
documented.12 In our recent work, we have demonstrated the
Vilsmeier-Haack Reactions of
2-Arylamino-3-acetyl-5,6-dihydro-4H-pyrans
toward the Synthesis of Highly Substituted
Pyridin-2(1H)-ones
Dexuan Xiang,† Yang Yang,† Rui Zhang,‡ Yongjiu Liang,‡
Wei Pan,† Jie Huang,† and Dewen Dong*,†,‡
Department of Chemistry, Northeast Normal UniVersity,
Changchun, 130024, China, and Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences,
Changchun, 130022, China
ReceiVed July 15, 2007
(3) (a) Jones, G. Pyridines and Their Benzo Derivatives: Synthesis. In
ComprehensiVe Heterocyclic Chemistry II; McKillop, A., Ed.; Pergamon
Press: Oxford, 1996; Vol. 5, p 167. (b) Scriven, E. F. V. Pyridines and
Their Benzo Derivatives: (ii) Reactivity at Ring Atoms. In ComprehensiVe
Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon
Press: Oxford, 1984; Vol. 2, p 165. (c) Jones, G. Pyridines and Their Benzo
Derivatives: Synthesis. In ComprehensiVe Heterocyclic Chemistry; Boulton,
A., McKillop, A., Eds.; Pergamon Press: Oxford, 1984; Ch. 2.08, p 395.
(4) (a) Torres, M.; Gil, S.; Parra, M. Curr. Org. Chem. 2005, 9, 1757.
(b) Jayasinghe, L.; Abbas, H. K.; Jacob, M. R.; Herath, W. H. M. W.;
Nanayakkara, N. P. D. J. Nat. Prod. 2006, 69, 439. (c) Angibaud, P. R.;
Venet, M. G.; Filliers, W.; Broeckx, R; Ligny, Y. A.; Muller, P.; Poncelet,
V. S.; End, D. W. Eur. J. Org. Chem. 2004, 479. (d) Litvinov, V. P. Russ.
Chem. ReV. 2003, 72, 69.
A facile and efficient one-pot synthesis of highly substituted
pyridin-2(1H)-ones was developed via Vilsmeier-Haack
reactions of readily available enaminones, 2-arylamino-3-
acetyl-5,6-dihydro-4H-pyrans, and a mechanism involving
sequential ring-opening, haloformylation, and intramolecular
nucleophilic cyclization reactions is proposed.
(5) (a) Decker, H. Chem. Ber. 1892, 25, 443. (b) Comins, D. L.; Saha,
J. K. J. Org. Chem. 1996, 61, 9623. (c) Du, W. Tetrahedron 2003, 59,
8649.
Over the past decades, pyridin-2(1H)-ones have emerged as
an important class of organic heterocycles since they are
distributed in numerous natural products and synthetic organic
compounds along with diverse useful bioactivities.1 In particular,
they constitute the skeleton of elfamycin antibiotics and the
antifungal compound ilicolicin.2 The pharmacological impor-
tance of pyridin-2(1H)-ones and their utility as versatile
intermediates in the synthesis of a wide variety of nitrogen
heterocycles, such as pyridine, piperidine, quinolizidine, and
indolizidine alkaloids, have directed considerable research
activity toward the construction of the skeleton of such kinds
of heterocycles.3,4 Many synthetic approaches for pyridin-2(1H)-
ones have been developed involving either the modification of
the pre-constructed heterocyclic ring by pyridinium salt chem-
istry and N-alkylation5,6 or through the construction of the
heterocyclic skeleton from appropriately substituted acyclic
precursors via Guareschi-Thorpe reactions, intramolecular
Dieckmann-type condensation, hetero Diels-Alder reactions,
(6) (a) Comins, D. L.; Gao, J. L. Tetrahedron Lett. 1994, 35, 2819. (b)
Hu, T.; Li, C. Org. Lett. 2005, 7, 2035. (c) Cristau, H.-J.; Cellier, P. P.;
Spindler, J.-F.; Taillefer, M. Chem.sEur. J. 2004, 10, 5607.
(7) (a) Baron, H.; Renfry, H.; Thorpe, J. J. Chem. Soc. 1904, 85, 1726.
(b) Aggarwal, V.; Sing, G.; Ila, H.; Junjappa, H. Synthesis 1982, 214. (c)
Gibson, K. R.; Hitzel, L.; Mortishire-Smith, R. J.; Gerhard, U.; Jelley, R.
A.; Reeve, A. J.; Rowley, M.; Nadin, A.; Owens, A. P. J. Org. Chem. 2002,
67, 9354.
(8) Chung, K. H.; Cho, K. Y.; Asami, Y.; Takahashi, N.; Yoshida, S.
Heterocycles 1991, 32, 4040.
(9) (a) Robin, A.; Julienne, K.; Meslin, J. C.; Deniaud, D. Tetrahedron
Lett. 2004, 45, 9557. (b) Sainta, F.; Serckx-Poncin, B.; Hesbain-Frisque,
A. M.; Ghosez, L. J. Am. Chem. Soc. 1982, 104, 1428.
(10) (a) Varela, J. A.; Saa, C. Chem. ReV. 2003, 103, 3787. (b)
Yamamoto, Y.; Takagishi, H.; Itoh, K. Org. Lett. 2001, 3, 2117. (c) Padwa,
A.; Sheehan, S. M.; Straub, C. S. J. Org. Chem. 1999, 64, 8648. (d) Padwa,
A.; Heidelbaugh, T. M.; Kuethe, J. T. J. Org. Chem. 2000, 65, 2368.
(11) (a) Jones, G.; Stanforth, S. P. The Vilsmeier Reaction of Non-
Aromatic Compounds. In Organic Reactions; Jones, G., Stanforth, S. P.,
Eds.; John Wiley: New York, 2000; Vol. 56, p 355. (b) Jutz, C. Iminium
Salts in Organic Chemistry. In AdVances in Organic Chemistry; Bo¨hme,
H., Viehe, H. G., Eds.; John Wiley: New York, 1976; Vol. 9, Part I, p
225.
(12) (a) Marson, C. M. Tetrahedron 1992, 48, 3659. (b) Tebby, J. C.;
Willetts, S. E. Phosphorus, Sulfur Silicon Relat. Elem. 1987, 30, 293. (c)
Mahata, P. K.; Venkatesh, C.; Syam Kumar, U. K.; Ila, H.; Junjappa, H. J.
Org. Chem. 2003, 68, 3966. (d) Smeets, S.; Asokan, C. V.; Motmans, F.;
Dehaen, W. J. Org. Chem. 2000, 65, 5882. (e) Gangadasu, B.; Narender,
P.; Bharath Kumar, S.; Ravinder, M.; Ananda Rao, B.; Ramesh, C.; China
Raju, B.; Jayathirtha Rao, V. Tetrahedron 2006, 62, 8398. (f) Amaresh, R.
R.; Perumal, P. T. Tetrahedron 1999, 55, 8083. (g) Thomas, A. D.; Asokan,
C. V. Tetrahedron 2004, 60, 5069. (h) Meth-Cohn, O.; Narine, B.
Tetrahedron Lett. 1978, 19, 2045. (i) Meth-Cohn, O.; Tarnowski, B. AdV.
Heterocycl. Chem. 1981, 31, 207. (j) Meth-Cohn, O. Heterocycles 1993,
35, 539. (k) Meth-Cohn, O.; Taylor, D. Tetrahedron 1995, 51, 12869.
* Corresponding author. Fax: +86(431)85098635.
† Northeast Normal University.
‡ Chinese Academy of Sciences.
(1) (a) Elbein, A. D.; Molyneux, R. J. The Chemistry and Biochemistry
of Simple Indolizidine and Related Polyhydroxy Alkaloids. In Alkaloids:
Chemical and Biological PerspectiVes; Pelletier, S. W., Ed.; Wiley: New
York, 1987; Vol. 5, p 1. (b) Li, Q.; Mitscher, L. A.; Shen, L. L. Med. Res.
ReV. 2000, 20, 231. (c) Nagarajan, M.; Xiao, X. S.; Antony, S.; Kohlhagen,
G.; Pommier, Y.; Cushman, M. J. Med. Chem. 2003, 46, 5712.
(2) (a) Dolle, R. E.; Nicolaou, K. C. J. Am. Chem. Soc. 1985, 107, 1691.
(b) Cox, R. J.; O’Hagan, D. J. Chem. Soc., Perkin Trans 1 1991, 2537.
10.1021/jo7015482 CCC: $37.00 © 2007 American Chemical Society
Published on Web 10/04/2007
J. Org. Chem. 2007, 72, 8593-8596
8593