Journal of the American Chemical Society
Page 6 of 8
1
2
3
4
5
6
7
8
Catalyzed DNA-Encoded Library Synthesis. J. Am. Chem. Soc. 2019, 141,
3723–3732.
Kojin Therapeutics, Kisbee Therapeutics, Decibel Therapeutics
and Eikonizo Therapeutics; serves on the Scientific Advisory
Boards of Eisai Co., Ltd., Ono Pharma Foundation, Exo
Therapeutics, and F-Prime Capital Partners; and is a Novartis
Faculty Scholar.
(16) Škopić, M. K.; Götte, K.; Gramse, C.; Dieter, M.; Pospich, S.; Raunser,
S.; Weberskirch, R.; Brunschweiger, A. Micellar Brønsted Acid Mediated
Synthesis of DNA-Tagged Heterocycles. J. Am. Chem. Soc. 2019, 141,
10546–10555.
(17) Potowski, M.; Kunig, V. B. K.; Losch, F.; Brunschweiger, A. Synthesis
of DNA-Coupled Isoquinolones and Pyrrolidines by Solid Phase
Ytterbium- and Silver-Mediated Imine Chemistry. Med. Chem. Commun.
2019, 10, 1082–1093.
(18) Škopić, M. K.; Salamon, H.; Bugain, O.; Jung, K.; Gohla, A.; Doetsch,
L. J.; Santos, D. dos; Bhat, A.; Wagner, B.; Brunschweiger, A. Acid- and
Au(I)-Mediated Synthesis of Hexathymidine-DNA-Heterocycle Chimeras,
an Efficient Entry to DNA-Encoded Libraries Inspired by Drug Structures.
Chem. Sci. 2017, 8, 3356–3361.
(19) Ruff, Y.; Martinez, R.; Pellé, X.; Nimsgern, P.; Fille, P.; Ratnikov, M.;
Berst, F. An Amphiphilic Polymer-Supported Strategy Enables Chemical
Transformations Under Anhydrous Conditions for DNA-Encoded Library
Synthesis. ACS Comb. Sci. 2020, just accepted manuscripts, DOI
10.1021/acscombsci.9b00164.
(20) Flood, D. T.; Asai, S.; Zhang, X.; Wang, J.; Yoon, L.; Adams, Z. C.;
Dillingham, B. C.; Sanchez, B. B.; Vantourout, J. C.; Flanagan, M. E.;
Piotrowski, D. W.; Richardson, P.; Green, S. G.; Shenvi, R. A.; Chen, J. S.;
Baran, P. S.; Dawson, P. E. Expanding Reactivity in DNA-Encoded Library
Synthesis via Reversible Binding of DNA to an Inert Quaternary
Ammonium Support. J. Am. Chem. Soc. 2019, 141, 9998–10006.
(21) Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. A Strain-Promoted [3 +
2] Azide−Alkyne Cycloaddition for Covalent Modification of
Biomolecules in Living Systems. J. Am. Chem. Soc. 2004, 126, 15046–
15047.
(22) Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.; Agard, N. J.; Chang, P.
V.; Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R. Copper-Free Click
Chemistry for Dynamic in Vivo Imaging. PNAS 2007, 104, 16793–16797.
(23) Blackman, M. L.; Royzen, M.; Fox, J. M. Tetrazine Ligation: Fast
Bioconjugation Based on Inverse-Electron-Demand Diels−Alder
Reactivity. J. Am. Chem. Soc. 2008, 130, 13518–13519.
(24) Lang, K.; Davis, L.; Wallace, S.; Mahesh, M.; Cox, D. J.; Blackman,
M. L.; Fox, J. M.; Chin, J. W. Genetic Encoding of Bicyclononynes and
Trans-Cyclooctenes for Site-Specific Protein Labeling in Vitro and in Live
Mammalian Cells via Rapid Fluorogenic Diels–Alder Reactions. J. Am.
Chem. Soc. 2012, 134, 10317–10320.
(25) Prescher, J. A.; Bertozzi, C. R. Chemistry in Living Systems. Nat.
Chem. Biol. 2005, 1, 13–21.
(26) Li, H.; Sun, Z.; Wu, W.; Wang, X.; Zhang, M.; Lu, X.; Zhong, W.;
Dai, D. Inverse-Electron-Demand Diels–Alder Reactions for the Synthesis
of Pyridazines on DNA. Org. Lett. 2018, 20, 7186–7191.
(27) Singh, I.; Freeman, C.; Heaney, F. Efficient Synthesis of DNA
Conjugates by Strain-Promoted Azide-Cyclooctyne Cycloaddition in the
Solid Phase. Eur. J. Org. Chem. 2011, 6739–6746.
(28) Singh, I.; Heaney, F. Solid Phase Strain Promoted “Click”
Modification of DNA via [3+2]-Nitrile Oxide–Cyclooctyne
Cycloadditions. Chem. Commun. 2011, 47, 2706–2708.
(29) Daoust, K. J.; Hernandez, S. M.; Konrad, K. M.; Mackie, I. D.;
Winstanley, J.; Johnson, R. P. Strain Estimates for Small-Ring Cyclic
Allenes and Buta-trienes. J. Org. Chem. 2006, 71, 5708–5714.
(30) Christl, M. Allenes Up to Seven-Membered Rings. In Modern Allene
Chemistry, John Wiley & Sons, Ltd, 2008, 243–357.
(31) Moore, W. R.; Moser, W. R. Reaction of 6,6-
Dibromobicyclo[3.1.0]Hexane with Methyllithium. Evidence for the
Generation of 1,2-Cyclohexadiene and 2,2’-Dicyclohexenylene. J. Am.
Chem. Soc. 1970, 92, 5469–5474.
ACKNOWLEDGMENT
John Capece, Jennifer Poirier, Philip Michaels, Carmelina Rakiec,
Thomas Dice and Ritesh Tichkule are gratefully acknowledged for
excellent technical and analytical support. Bruce Hua and Drs.
Christopher Gerry, Wenyu Wang, Christian Gampe, Simone
Bonazzi, Nichola Smith and Frédéric Berst are gratefully
acknowledged for general support, fruitful discussions and
valuable feedback during preparation of this manuscript. The
research was supported in part by the National Institute of General
Medical Sciences (R35GM127045 awarded to S.L.S.) and by the
NIBR Scholar’s Program.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) Neri, D.; Lerner, R. A. DNA-Encoded Chemical Libraries: A Selection
System Based on Endowing Organic Compounds with Amplifiable
Information. Annu. Rev. Biochem. 2018, 87, 479–502.
(2) Satz, A. L. What Do You Get from DNA-Encoded Libraries? ACS Med.
Chem. Lett. 2018, 9, 408–410.
(3) Cochrane, W. G.; Malone, M. L.; Dang, V. Q.; Cavett, V.; Satz, A. L.;
Paegel, B. M. Activity-Based DNA-Encoded Library Screening. ACS
Comb. Sci. 2019, 21, 425–435.
(4) MacConnell, A. B.; Price, A. K.; Paegel, B. M. An Integrated
Microfluidic Processor for DNA-Encoded Combinatorial Library
Functional Screening. ACS Comb. Sci. 2017, 19, 181–192.
(5) Galloway, W. R. J. D.; Isidro-Llobet, A.; Spring, D. R. Diversity-
Oriented Synthesis as a Tool for the Discovery of Novel Biologically Active
Small Molecules. Nat. Commun. 2010, 1, 80 Nat. Commun. 2010, 1, 80,
doi: 10.1038/ncomms1081.
(6) Clemons, P. A.; Wilson, J. A.; Dančík, V.; Muller, S.; Carrinski, H. A.;
Wagner, B. K.; Koehler, A. N.; Schreiber, S. L. Quantifying Structure and
Performance Diversity for Sets of Small Molecules Comprising Small-
Molecule Screening Collections. PNAS 2011, 108, 6817–6822.
(7) Gerry, C. J.; Schreiber, S. L. Chemical Probes and Drug Leads from
Advances in Syn-thetic Planning and Methodology. Nat. Rev. Drug Discov.
2018, 17, 333–352.
(8) Schreiber, S. L. A Chemical Biology View of Bioactive Small
Molecules and a Binder-Based Approach to Connect Biology to Preci-sion
Medicines. Isr. J. Chem. 2019, 59, 52–59.
(9) Ratnayake, A. S.; Flanagan, M. E.; Foley, T. L.; Smith, J. D.; Johnson,
J. G.; Bellenger, J.; Montgomery, J. I.; Paegel, B. M. A Solution Phase
Platform to Characterize Chemical Reaction Compatibility with DNA-
Encoded Chemical Library Synthesis. ACS Comb. Sci. 2019, 21, 650–655.
(10) Malone, M. L.; Paegel, B. M. What Is a “DNA-Compatible” Reaction?
ACS Comb. Sci. 2016, 18, 182–187.
(11) Wang, J.; Lundberg, H.; Asai, S.; Martín-Acosta, P.; Chen, J. S.;
Brown, S.; Farrell, W.; Dushin, R. G.; O’Donnell, C. J.; Ratnayake, A. S.;
Richardson, P.; Liu, Z.; Qin, T.; Blackmond, D. G.; Baran, P. S. Kinetically
Guided Radical-Based Synthesis of C(Sp3)−C(Sp3) Linkages on DNA.
PNAS 2018, 115, E6404–E6410.
(12) Kölmel, D. K.; Loach, R. P.; Knauber, T.; Flanagan, M. E. Employing
Photoredox Catalysis for DNA-Encoded Chemistry: Decarboxylative
Alkylation of α-Amino Acids. ChemMedChem 2018, 13, 2159–2165.
(13) Ruff, Y.; Berst, F. Efficient Copper-Catalyzed Amination of DNA-
Conjugated Aryl Iodides under Mild Aqueous Conditions. Med. Chem.
Commun. 2018, 9, 1188–1193.
(14) a) Buller, F.; Mannocci, L; Zhang, Y.; Dumelin, C. E.; Scheuermann,
J.; Neri, D. Design and synthesis of a novel DNA-encoded chemical library
using Diels-Alder cycloadditions. Bioorg. Med. Chem. Lett. 2008, 18,
5926–5931. b) Gerry, C. J.; Yang, Z.; Stasi, M.; Schreiber, S. L. DNA-
Compatible [3 + 2] Nitrone–Olefin Cycloaddition Suitable for DEL
Syntheses. Org. Lett. 2019, 21, 1325–1330.
(32) Moore, W. R.; Moser, W. R. Reaction of 6,6-
Dibromobicyclo[3.1.0]Hexane with Methyllithium. Efficient Trapping of
1,2-Cyclohexadiene by Styrene. J. Org. Chem. 1970, 35, 908–912.
(33) Wittig, G.; Fritze, P. On the Intermediate Occurrence of 1,2-
Cyclohexadiene. Angew. Chem. Int. Ed. 1966, 5, 846–846.
(34) Lofstrand, V. A.; West, F. G. Efficient Trapping of 1,2-
Cyclohexadienes with 1,3-Dipoles. Chem. Eur. J. 2016, 22, 10763–10767.
(35) Quintana, I.; Peña, D.; Pérez, D.; Guitián, E. Generation and Reactivity
of 1,2-Cyclohexadiene under Mild Reaction Conditions.Eur. J. Org. Chem.
2009, 2009, 5519–5524.
(15) Phelan, J. P.; Lang, S. B.; Sim, J.; Berritt, S.; Peat, A. J.; Billings, K.;
Fan, L.; Molander, G. A. Open-Air Alkylation Reactions in Photoredox-
(36) Barber, J. S.; Styduhar, E. D.; Pham, H. V.; McMahon, T. C.; Houk,
K. N.; Garg, N. K. Nitrone Cycloadditions of 1,2-Cyclohexadiene. J. Am.
Chem. Soc. 2016, 138, 2512–2515.
ACS Paragon Plus Environment
RESTRICTED