ORGANIC
LETTERS
2007
Vol. 9, No. 22
4583-4586
Pentacene Oligomers and Polymers:
Functionalization of Pentacene to Afford
Mono-, Di-, Tri-, and Polymeric Materials
Dan Lehnherr and Rik R. Tykwinski*
Department of Chemistry, UniVersity of Alberta, Edmonton, Alberta T6G 2G2, Canada
Received August 24, 2007
ABSTRACT
The synthesis and characterization of defined-length di- and trimeric pentacenes and the corresponding polymers are described. The synthesis
is divergent from two common pentacene building blocks, 1 and 2, allowing for structural diversity. The resulting materials are air stable and
exhibit good solubility in common organic solvents.
It was not until a decade ago when organic materials began
to have a significant practical impact in optoelectronic
applications. Today, the field of organic semiconducting
materials is very much active and has the potential to
revolutionize applications in photovoltaic cells, chemical
sensors, and thin film transistors (TFTs).1,2 The use of
polycyclic aromatic hydrocarbons, such as pentacene, has
dominated most studies, but despite the substantial research
on pentacene-based devices, relatively few derivatives of
pentacene are known.1-3 To date, much of the work to
enhance the performance of pentacene-based materials has
been through device fabrication techniques rather than
synthetic modification of the pentacene skeleton. Only
recently has functionalization been used in an attempt to
increase the semiconductive properties (i.e., charge carrier
mobilities) and processability of pentacene-based materials.3
A natural progression in the development of organic ad-
vanced materials is the incorporation of functional chro-
mophores into a polymer framework with the goal of
increasing the solubility and facile film formation of the
material. While oligoanthracenes have been reported,4 defined-
length pentacene-based oligomers remain, to our knowledge,
unknown.5 We report herein the synthesis of oligomers and
polymers that contain pentacene in the repeat unit.
It has been shown that substitution of pentacene in the
6,13-positions with ethynylsilanes improves stability versus
(3) For recent examples, see: (a) Anthony, J. E.; Brooks, J. S.; Eaton,
D. L.; Parkin, S. R. J. Am. Chem. Soc. 2001, 123, 9482-9483. (b) Anthony,
J. E.; Eaton, D. L.; Parkin, S. R. Org. Lett. 2002, 4, 15-18. (c) Payne, M.
M.; Delcamp, J. H.; Parkin, S. R.; Anthony, J. E. Org. Lett. 2004, 6, 1609-
1612. (d) Payne, M. M.; Odom, S. A.; Parkin, S. R.; Anthony, J. E. Org.
Lett. 2004, 6, 3325-3328. (e) Swartz, C. R.; Parkin, S. R.; Bullock, J. E.;
Anthony, J. E.; Mayer, A. C.; Malliaras, G. G. Org. Lett. 2005, 7, 3163-
3166. (f) Susumu, K.; Duncan, T. V.; Therien, M. J. J. Am. Chem. Soc.
2005, 127, 5186-5195. (g) Vets, N.; Smet, M.; Dehaen, W. Synlett 2005,
217-222. (h) Chan, S. H.; Lee, H. K.; Wang, Y. M.; Fu, N. Y.; Chen, X.
M.; Cai, Z. W.; Wong, H. N. C. Chem. Commun. 2005, 66-68. (i) Taka-
hashi, T.; Li, S.; Huang, W.; Kong, F.; Nakajima, K.; Shen, B.; Ohe, T.;
Kanno, K.-i. J. Org. Chem. 2006, 71, 7967-7977. (j) Briseno, A. L.; Miao,
Q.; Ling, M.-M.; Reese, C.; Meng, H.; Bao, Z.; Wudl, F. J. Am. Chem. Soc.
2006, 128, 15576-15577. (k) Miao, Q.; Chi, X.; Xiao, S.; Zeis, R.; Lefen-
feld, M.; Siegrist, T.; Steigerwald, M. L.; Nuckolls, C. J. Am. Chem. Soc.
2006, 128, 1340-1345. (l) Palayangoda, S. S.; Mondal, R.; Shah, B. K.;
Neckers, D. C. J. Org. Chem. 2007, 72, 6584-6587. (m) For supramolecular
assemblies, see: Desvergne, J.-P.; Del Guerzo, A.; Bouas-Laurent, H.; Belin,
C.; Reichwagen, J.; Hopf, H. Pure Appl. Chem. 2006, 78, 707-719.
(4) Ito, K.; Suzuki, T.; Sakamoto, Y.; Kubota, D.; Inoue, Y.; Sato, F.;
Tokito, S. Angew. Chem., Int. Ed. 2003, 42, 1159-1162.
(1) (a) Murphy, A. R.; Fre´chet, J. M. J. Chem. ReV. 2007, 107, 1066-
1096. (b) Bendikov, M.; Wudl, F. Chem. ReV. 2004, 104, 4891-4945.
(2) Anthony, J. E. Chem. ReV. 2006, 106, 5028-5048.
10.1021/ol702094d CCC: $37.00
© 2007 American Chemical Society
Published on Web 10/06/2007