Page 9 of 10
Journal of the American Chemical Society
(5) Kotani, S.; Yoshiwara, Y.; Ogasawara, M.; Sugiura, M.;
Nakajima, M. Catalytic Enantioselective Aldol Reactions of
Unprotected Carboxylic Acids under Phosphine Oxide Catalysis.
Angew. Chem. Int. Ed. 2018, 57, 15877–15881.
(6) Morita, Y.; Yamamoto, T.; Nagai, H.; Shimizu, Y.; Kanai, M.
Chemoselective Boron-Catalyzed Nucleophilic Activation of
Carboxylic Acids for Mannich-Type Reactions. J. Am. Chem. Soc.
2015, 137, 7075–7078.
(7) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. Radicals:
Reactive Intermediates with Translational Potential. J. Am. Chem. Soc.
2016, 138, 12692–12714.
(8) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A.
K.; Lei, A. Recent Advances in Radical C-H Activation/Radical
Cross-Coupling. Chem. Rev. 2017, 117, 9016–9085.
(9) Fu, G. C. Transition-Metal Catalysis of Nucleophilic
Substitution Reactions: A Radical Alternative to S N 1 and S N 2
Processes. ACS Cent. Sci. 2017, 3, 692–700.
(10) Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R. Double
Asymmetric Synthesis and a New Strategy for Stereochemical
Control in Organic Synthesis. Angew. Chem., Int. Ed. 1985, 24, 1-30
(11) Hanneseian, S. Total Synthesis of Natural Products: the
Chiron Approach; Pergamon Press: New York, 1983; Chapter 2.
(12) Oppolzer, W. Asymmetric Diels‐Alder and Ene Reactions in
Organic Synthesis. New Synthetic Methods (48). Angew. Chem., Int.
Ed. 1984, 23, 876-889.
(13) Reetz, M. T. Chelation or Non‐Chelation Control in Addition
Reactions of Chiral α‐ and β‐Alkoxy Carbonyl Compounds [New
Synthetic Methods (44)]. Angew. Chem., Int. Ed. 1984, 23, 556-569.
(14) Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L.
Anthracyclines: molecular advances and pharmacologic developments
in antitumor activity and cardiotoxicity. Pharmacol. Rev. 2004, 56,
185-229
(15) Davis, F. A.; Chen, B.-C. Asymmetric hydroxylation of
enolates with N-sulfonyloxaziridines. Chem. Rev. 1992, 92, 919-934.
(16) Coppola, G. M.; Schuster, H. F. α-Hydroxy Acids in
Enantioselective Syntheses; Wiley-VCH: Weinheim, 1997.
(17) Chen, B.-C.; Zhou, P.; Davis, F. A.; Ciganek, E.
α‐Hydroxylation of Enolates and Silyl Enol Ethers. Org. React. 2003,
62, 1-356.
(18) Janey, J. M. Recent Advances in Catalytic, Enantioselective α
Aminations and α Oxygenations of Carbonyl Compounds. Angew.
Chem., Int. Ed. 2005, 44, 4292-4300.
biomass to drug pharmacophore. J. Am. Chem. Soc. 2014, 136, 5257–
5260.
(25) Dinca, E.; Hartmann, P.; Smrček, J.; Dix, I.; Jones, P. G.; Jahn,
U. General and efficientꢀ-oxygenation of carbonyl compounds by
TEMPO induced by single-electron-transfer oxidation of their
enolates. Eur. J. Org. Chem. 2012, 4461–4482.
(26) De La Torre, A.; Kaiser, D.; Maulide, N. Flexible and
Chemoselective Oxidation of Amides to α-Keto Amides and α-
Hydroxy Amides. J. Am. Chem. Soc. 2017, 139, 6578–6581.
(27) Taninokuchi, S.; Yazaki, R.; Ohshima, T. Catalytic Aerobic
Chemoselective α-Oxidation of Acylpyrazoles en Route to α-Hydroxy
Acid Derivatives. Org. Lett. 2017, 19, 3187–3190.
(28) Li, X.; Lin, F.; Huang, K.; Wei, J.; Li, X.; Wang, X.; Geng,
X.; Jiao, N. Selective α-Oxyamination and Hydroxylation of Aliphatic
Amides. Angew. Chem. Int. Ed. 2017, 56, 12307–12311.
(29) Tanaka, T.; Tanaka, T.; Tsuji, T.; Yazaki, R.; Ohshima, T.
Strategy for Catalytic Chemoselective Cross-Enolate Coupling
Reaction via a Transient Homocoupling Dimer. Org. Lett. 2018, 20,
3541–3544.
(30) Tanaka, T.; Hashiguchi, K.; Tanaka, T.; Yazaki, R.; Ohshima,
T. Chemoselective Catalytic Dehydrogenative Cross-Coupling of 2-
Acylimidazoles: Mechanistic Investigations and Synthetic Scope.
ACS Catal. 2018, 8, 8430–8440.
(31) Jie, X.; Shang, Y.; Zhang, X.; Su, W. Cu-Catalyzed Sequential
Dehydrogenation−Conjugate Addition for β-Functionalization of
Saturated Ketones: Scope and Mechanism. J. Am. Chem. Soc. 2016,
138, 5623−5633.
(32) Li, L.; Yu, Z.; Shen, Z. Copper-Catalyzed Aminoxylation of
Different Types of Hydrocarbons with TEMPO: A Concise Route to
N-Alkoxyamine Derivatives. Adv. Synth. Catal. 2015, 357, 3495–
3500.
(33) Blackmond, D. G. Kinetic Profiling of Catalytic Organic
Reactions as a Mechanistic Tool. J. Am. Chem. Soc. 2015, 137,
10852–10866.
(34) Wiberg, K. B. The Deuterium Isotope Effect. Chem. Rev.
1955, 55, 713–743.
(35) Bell, R. P. Liversidge Lecture. Recent Advances in the Study
of Kinetic Hydrogen Isotope Effects. Chem. Soc. Rev. 1972, 3,
513−544.
(36) Simmons, E. M.; Hartwig, J. F. On the interpretation of
deuterium kinetic isotope effects in C-H bond functionalizations by
transition-metal complexes. Angew. Chem. Int. Ed. 2012, 51, 3066–
3072.
(37) Hatano, M.; Moriyama, K.; Maki, T.; Ishihara, K. Which is
the actual catalyst: Chiral phosphoric acid or chiral calcium
phosphate? Angew. Chem. Int. Ed. 2010, 49, 3823–3826.
(38) Stoichiometric amount of iron acetate (1.0 equiv) and L5 (1.0
equiv) in the absence of 4Å molecular sieves delivered the product
3aa in 63% yield.
(39) A mixture of 1a and sodium trifluoromethanesulfonate (1:1
ratio) exhibited a singlet peak at 3.555 ppm, indicating that sodium
carboxylate salt was not generated (Supporting information).
(40) Kleinlein, C.; Bendelsmith, A. J.; Zheng, S. L.; Betley, T. A.
C−H Activation from Iron(II)-Nitroxido Complexes. Angew. Chem.
Int. Ed. 2017, 56, 12197–12201.
(41) An acetonitrile solution of Fe3O(OAc)6·ClO4, L5, and 2,2,6,6-
tetramethylpiperidine (0.33:1:2 ratio) exhibited the same iron
complex signal by CSI-MS analysis.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(19) Jaworski, J. G.; Stumpf, P. K. Properties of a Soluble Stearyl-
Acyl Carrier Protein Desaturase from Maturing Carfhamus
finctoriusl. Arch. Biochem. Biophys. 1974, 162, 147-157.
(20) Adam, W.; Boland, W.; Hartmann-Schreier, J.; Humpf, H. U.;
Lazarus, M.; Saffert, A.; Saha-Möller, C. R.; Schreier, P.
α
Hydroxylation of Carboxylic Acids with Molecular Oxygen
Catalyzed by the α Oxidase of Peas (Pisum Sativum): A Novel
Biocatalytic Synthesis of Enantiomerically Pure (R)-2-Hydroxy Acids.
J. Am. Chem. Soc. 1998, 120, 11044–11048.
(21) Konen, D. A.; Silbert, L. S.; Pfeffer, P. E. α-Anions. VII.
Direct Oxidation of Enolate Anions to 2-Hydroperoxy- and 2-
Hydroxycarboxylic Acids and Esters. J. Org. Chem. 1975, 40, 3253–
3258.
(22) Rodríguez, N.; Goossen, L. J. Decarboxylative coupling
reactions: A modern strategy for C-C-bond formation. Chem. Soc.
Rev. 2011, 40, 5030–5048.
(23) Okada, K.; Okamoto, K.; Morita, N.; Okubo, K.; Oda, M.
Photosensitized Decarboxylative Michael Addition through N-
(Acyloxy)phthalimides via an Electron-Transfer Mechanism. J. Am.
Chem. Soc. 1991, 113, 9401–9402.
(42) Direct cross-coupling of endiolate V with TEMPO cannot be
ruled out.
(24) Zuo, Z.; MacMillan, D. W. C. Decarboxylative arylation of α-
Amino acids via photoredox catalysis: A one-step conversion of
ACS Paragon Plus Environment