Angewandte
Chemie
Scheme 4. Iterative homologation of boronic esters 8 and ent-8.
[3] a) V. K. Aggarwal, G. Y. Fang, A. T. Schmidt, J. Am. Chem. Soc.
enantiomer to (ꢀ)-sparteine with high enantiomeric ratios.
Thus, using the opposite enantiomeric carbamate ent-1e in
the same process gave the alternative diastereomer 10 with
similarly high diastereo- (94:6 d.r.) and enantioselectivities
(e.r. > 98:2; Scheme 4). The enantiomeric pair to 9 and 10 was
readily obtained with similarily high d.r. and e.r. by using the
same protocol but starting from ent-8, which was itself derived
from the first homologation using OꢀBrienꢀs enantiomeric
sparteine surrogate (+)-11 (Scheme 4).
These levels of enantio- and diastereoselectivity clearly
show that the reaction is dominated by reagent control with
no “matching” issues affecting the outcome of the second
homologation, even though adjacent stereocenters are cre-
ated.
In conclusion, we have developed a process for the
homologation of boranes and boronic esters using Hoppe-
type lithiated carbamates which shows very broad substrate
scope. The Hoppe-type lithiated carbamates are effectively
chiral carbenoids and are derived from the simplest of
reagents: primary alcohols. The power of the methodology
lies in its iterative use. Thus, through two cycles of the
homologation process, either enantiomer of either diastereo-
mer can be easily accessed through appropriate choice of the
chiral diamine employed ((ꢀ)-sparteine 12 or (+)-11).
Application of this versatile methodology in natural product
synthesis is currently underway.
2005, 127, 1642; b) G. Y. Fang, V. K. Aggarwal, Angew. Chem.
2007, 119, 363; Angew. Chem. Int. Ed. 2007, 46, 359; c) G. Y.
Fang, O. Wallner, N. di Blasio, V. K. Aggarwal, unpublished
results.
[4] a) R. W. Hoffmann, P. G. Nell, R. Leo, K. Harms, Chem. Eur. J.
2000, 6, 3359; b) R. W. Hoffmann, Chem. Soc. Rev. 2003, 32, 225;
c) T. Satoh, K. Tahano, Tetrahedron 1996, 52, 2349.
[5] P. R. Blakemore, M. S. Burge, J. Am. Chem. Soc. 2007, 129, 3068.
[6] P. R. Blakemore, S. P. Marsden, H. D. Vater, Org. Lett. 2006, 8,
773.
[7] a) D. Hoppe, F. Hintze, P. Tebben, Angew. Chem. 1990, 102,
1457; Angew. Chem. Int. Ed. Engl. 1990, 29, 1422; For reviews on
a-lithiation of carbamates, see: b) D. Hoppe, F. Hintze, P.
Tebben, M. Paetow, H. Ahrens, J. Schwerdtfeger, P. Sommerfeld,
J. Haller, W. Guarnieri, S. Kolczewksi, T. Hense, D. Hoppe, Pure
Appl. Chem. 1994, 66, 1479; c) D. Hoppe, F. Hintze, Angew.
Chem. 1997, 109, 2376; Angew. Chem. Int. Ed. Engl. 1997, 36,
2282; d) A. Basu, S. Thayumanavan, Angew. Chem. 2002, 114,
740; Angew. Chem. Int. Ed. 2002, 41, 716; e) D. Hoppe, F. Marr,
M. Brüggemann in Organolithiums in Enantioselective Synthesis
(Ed.: D. M. Hodgson), Springer, Heidelberg, 2003, pp. 61 – 137,
and references therein; f) D. Hoppe, G. Christoph in The
Chemistry ofOrganolithium Compounds (Eds.: Z. Rappoport,
I. Marek), Wiley, Chichester, 2004, p. 1055.
[8] a) E. Beckmann, V. Desai, D. Hoppe, Synlett 2004, 2275; b) E.
Beckmann, D. Hoppe, Synthesis 2005, 217; c) M. J. McGrath, P.
OꢀBrien, Synthesis 2006, 2233.
[9] One isolated example of a reaction of a lithiated carbamate with
an arylboronate has been reported during the total synthesis of
N-acetylcolchinol: G. Besong, K. Jarowicki, P. J. Kocienski, E.
Sliwinski, F. T. Boyle, Org. Biomol. Chem. 2006, 4, 2193.
[10] In contrast, reactions of the same boranes with sulfur ylides only
show high selectivity in the cases of Ph, alkenyl, and iPr
substituents.[3c] In fact, the only other examples where the boron
substituent migrates in preference to the boracycle are cases
involving a (small) halide leaving group or carbonylation. In all
other cases, the boracycle migrates preferentially. Thus the large
carbamate moiety is behaving as a small leaving group. For a
discussion of the factors influencing the migration of groups on
nonsymmetrical ate complexes of organoboranes, see: V. K.
Aggarwal, G. Y. Fang, X. Ginesta, D. Howells, M. Zaja, Pure
Appl. Chem. 2006, 78, 215.
Received: May 16, 2007
Published online: July 20, 2007
Keywords: asymmetric synthesis · boranes · boronic esters ·
.
chiral carbenoids · homologation
[1] a) D. S. Matteson, D. Majumder, J. Am. Chem. Soc. 1980, 102,
7588; b) D. S. Matteson, D. Ray, J. Am. Chem. Soc. 1980, 102,
7590; For reviews on the use of boronic esters in asymmetric
syntheses, see: c) D. S. Matteson, Tetrahedron 1989, 45, 1859;
d) D. S. Matteson, Tetrahedron 1998, 54, 1055.
[2] D. S. Matteson, H.-W. Man, J. Org. Chem. 1996, 61, 6047.
Angew. Chem. Int. Ed. 2007, 46, 7491 –7494
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
7493