C O M M U N I C A T I O N S
precedented in chiral phase-transfer catalysis17 and has recently been
demonstrated in the context of asymmetric counterion-directed
catalysis.18 We anticipate that asymmetric catalysis via anion-
binding mechanisms may be applicable to a wide variety of valuable
transformations involving highly reactive cationic intermediates,
and this is a focus of our current effort.
Table 2. Substituent, Counterion, and Solvent Effect Studies
temp
C)
time
(h)
conva
(%)
eeb
(%)
entry
solvent
X
R
(
°
Acknowledgment. This work was supported by the NIGMS
(GM-43214 and PO1 GM-69721), by fellowship support to I.T.R.
from the NSF, ACS, Pfizer, and Bristol-Myers Squibb, and to E.A.P.
through a postdoctoral fellowship from the NIH. We thank Lars
Nielsen and Dr. Matthew Woll for helpful discussions.
1
2
3
4
5
6
7
8
TBME
TBME
TBME
TBME
TBME
TBME
THF
Cl
Cl
Cl
Br
I
Cl
Cl
Cl
H
CH3
H
H
H
H
H
H
-78
-78
-55
-55
-55
-55
-55
-55
8
8
23
23
23
8
12
94
80
82
75
65
>95
>95
99
96
97
68
<5
97
8
8
34
<5
Supporting Information Available: Complete experimental pro-
cedures and characterization data for products and all isolated inter-
mediates. This material is available free of charge via the Internet at
CH2Cl2
a Determined by 1H NMR. b Determined by chiral SFC analysis on
commercial columns.
Scheme 2. Proposed Reaction Mechamism
References
(1) For reviews see: (a) Maryanoff, B. E.; Zhang, H.-C.; Cohen, J. H.; Turchi,
I. J.; Maryanoff, C. A. Chem. ReV. 2004, 104, 1431-1628. (b) Royer, J.;
Bonin, M.; Micouin, L. Chem. ReV. 2004, 104, 2311-2352. (c) Cox, E.
D.; Cook, J. M. Chem. ReV. 1995, 95, 1797-1842. (d) Speckamp, W.
N.; Hiemstra, H. Tetrahedron 1985, 41, 4367-4416.
(2) (a) Takamura, M.; Funabashi, K.; Kanai, M.; Shibasaki, M. J. Am. Chem.
Soc. 2000, 122, 6327-6328. (b) Takamura, M.; Funabashi, K.; Kanai,
M.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 6801-6802. (c)
Funabashi, K.; Ratni, H.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc.
2001, 123, 10784-10785.
(3) (a) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558-
10559. (b) Taylor, M. S.; Tokunaga, N.; Jacobsen, E. N. Angew. Chem.,
Int. Ed. 2005, 44, 6700-6704.
(4) (a) Pan, S. C.; Zhou, J.; List, B. Angew. Chem., Int. Ed. 2007, 46, 612-
615. (b) Pan, S. C.; List, B. Org. Lett. 2007, 9, 1149-1151.
(5) (a) Hubert, J. C.; Speckamp, W. N.; Huisman, H. O. Tetrahedron Lett.
1972, 13, 4493-4496. (b) Hubert, J. C.; Wijnberg, J. B. P. A.; Speckamp,
W. N. Tetrahedron 1975, 31, 1437-1441.
(6) See Supporting Information for further details.
byproducts,8 allowed assignment of the absolute configuration of
3a generated using 1b as R.
(7) Kam, T.-S.; Sim, K.-M. Phytochemistry 1998, 47, 145-147.
(8) For alternative synthetic approaches to harmicine, see: Szawkało, J.;
Czarnocki, S. J.; Zawadzka, A.; Wojtasiewicz, K.; Leniewski, A.; Maurin,
J. K.; Czarnockia, Z.; Drabowicz, J. Tetrahedron: Asymmetry 2007, 18,
406-413 and references cited therein.
(9) (a) Bose, A. K.; Spiegelman, G.; Manhas, M. S. Tetrahedron Lett. 1971,
3167. (b) Nortey, S. O.; McComsey, D. F.; Maryanoff, B. E. Heterocycles
1993, 35, 1075-1088.
(10) (a) Bailey, P. D. J. Chem. Res. 1987, 202-203. (b) Czerwin´ski, K. M.;
Deng, L.; Cook, J. M. Tetrahedron Lett. 1992, 33, 4721-4724. (c) Bailey,
P. D.; Hillinshead, S. P.; McLay, N. R.; Morgan, K.; Palmer, S. J.; Prince,
S. N.; Reynolds, C. D.; Wood, S. D. J. Chem. Soc., Perkin Trans. 1 1993,
431-439. (d) Kowalski, P.; Bojarski, A. J.; Mokrosz, J. L. Tetrahedron
1995, 51, 2737-2742.
(11) No KIE was observed in reactions in which the indole C2 position of 3a
was deuterated, ruling out the possibility of rate-limiting deprotonation/
rearomatization step from 4d.
(12) DFT calculations of fully ionized N-acyliminium ions interacting with
thiourea derivatives failed to converge on any ground state bound structure.
See Supporting Information.
(13) Similar reactivity and slightly diminished enantioselectivities are observed
in reactions of urea analogues of catalyst 1 (e.g., 90% ee with 1a, and
75% ee with the urea analogue) in the cyclization of 3a. This appears to
rule out a direct, productive interaction of the urea thiocarbonyl with the
N-acyliminium ion.
Spectroscopic (variable temperature 1H NMR) studies of reaction
mixtures generated from hydroxylactam 2a and TMSCl indicated
that formal dehydration and formation of the corresponding
chlorolactam9 is rapid and irreversible.6 Further, the observation
of enhanced reactivity of alkylated versus reduced derivatives (Table
2, entries 1 and 2) suggests that an SN2-type displacement of
chloride is not operative in the cyclization reaction and points rather
to an SN1-type mechanism (eq 1).1d Since the enantioselectivity-
determining step is likely, either the addition of the indole to the
N-acyliminium ion (Scheme 2, Path A 4bf4c or Path B 4bf4d)
or alkyl migration of the spiroindoline intermediate (Scheme 2, Path
A 4cf4d),1c,10,11 catalyst interaction with at least one of these
species is required. However, there is no viable Lewis basic site
for productiVe catalyst binding to substrate in either 4b or 4c.12,13
We propose instead that the thiourea catalyst promotes enanti-
oselective cyclization by inducing dissociation of the chloride
counterion and forming a chiral N-acyliminium chloride-thiourea
complex (Scheme 2). As would be expected within this model,
pronounced halide counterion effects (Table 2, entries 3-5)14 and
solvent effects (entries 6-8) on enantioselectivity are observed.
Catalysis and enantioinduction may thus result from initial abstrac-
tion of a chloride anion from 4a by 1b in an SN1-type rate-
determining step (4af4b) and subsequent cyclization mediated by
the resulting anion-bound thiourea.
(14) This effect may be ascribed to several factors, including a trend toward
poorer ion pairing, weaker binding to the thiourea, or increased background
reactivity with the increase and size and leaving group ability of the halide.
(15) (a) Schmidtchen, F. P.; Berger, M. Chem. ReV. 1997, 97, 1609-1646.
(b) Antonisse, M. M. G.; Reinhoudt, D. N. Chem. Commun. 1998, 443-
448. (c) Hisaki, I.; Sasaki, S.-I.; Hirose, K.; Tobe, Y. Eur. J. Org. Chem.
2007, 607-615. (d) Jagessar, R. C.; Shang, M.; Scheidt, W. R.; Burns.
D. H. J. Am. Chem. Soc. 1998, 120, 11684-11692.
(16) Analysis of 1H NMR spectra of equimolar solutions of 1b and tetrabu-
tylammonium chloride revealed direct evidence for chloride binding to
the thiourea. See Supporting Information.
(17) Maruoka, K.; Ooi, T. Chem. ReV. 2003, 103, 3013-3028 and references
therein.
Such a mode of catalytic generation of cationic intermediates
finds support in the well-established anion-binding properties of
ureas and thioureas.15,16 Further, the possibility of high levels of
enantioinduction induced through counterion interactions is well-
(18) (a) Mayer, S.; List, B. Angew. Chem., Int. Ed. 2006, 45, 4193-4195. (b)
Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317,
496-499.
JA076179W
9
J. AM. CHEM. SOC. VOL. 129, NO. 44, 2007 13405