C O M M U N I C A T I O N S
Supporting Information Available: Experimental procedures and
computational details. This material is available free of charge via the
References
(1) (a) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826. (b) Ritleng,
V.; Sirlin, C.; Pfeffer, M. Chem. ReV. 2002, 102, 1731. (c) Miura, M.;
Nomura, M. Top. Curr. Chem. 2002, 219, 211. (d) Kakiuchi, F.; Chatani,
N. AdV. Synth. Catal. 2003, 345, 1077. (e) Campeau, L.-C.; Fagnou, K.
Chem. Commun. 2005, 1253. (f) Espino, C. G.; Du Bois, J. In Modern
Rhodium-Catalyzed Organic Reactions; Evans, P. A., Ed.; Wiley-VCH:
Weinheim, Germany, 2005; pp 379-416. (g) Davies, H. M. L. Angew.
Chem., Int. Ed. 2006, 45, 6422. (h) Daugulis, O.; Zaitsev, V. G.;
Shabashov, D.; Pham, Q.-N.; Lazareva, A. Synlett 2006, 3382. (i) Dick,
A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439. (j) Alberico, D.; Scott,
M. E.; Lautens, M. Chem. ReV. 2007, 107, 174. (k) Seregin, I. V.;
Gevorgyan, V. J. Chem. Soc., Chem. ReV. 2007, 36, 1173. (l) Campeau,
L.-C.; Stuart, D. R.; Fagnou, K. Aldrich. Chim. Acta 2007, 40, 35. (m)
Godula, K.; Sames, D. Science 2006, 312, 67.
(2) For examples at unactivated sp3 C-H bonds, see: (a) Giri, R.; Maugel,
N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J.
Am. Chem. Soc. 2007, 129, 3510. (b) Chen, X.; Goodhue, C. E.; Yu, J.-
Q. J. Am. Chem. Soc. 2006, 128, 12634. (c) Hitce, J.; Retailleau, P.;
Baudoin, O. Chem. Eur. J. 2007, 13, 792. (d) Zaitsev, V. G.; Shabashov,
D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154. (e) Shaabashov,
D.; Daugulis, O. Org. Lett. 2005, 7, 3657. (f) Barder, T. E.; Walker, S.
D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685.
(g) DeBoef, B.; Pastine, S. J.; Sames, D. J. Am. Chem. Soc. 2004, 126,
6556. (h) Baudoin, O.; Herrbach, A.; Gueritte, F. Angew. Chem., Int. Ed.
2003, 42, 5736. (i) Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F.
Science 2000, 287, 1995. For examples at benzylic C-H bonds, see: (j)
Ren, H.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 3462. (k) Dong,
C.-G.; Hu, Q.-G. Angew. Chem., Int. Ed. 2006, 45, 2289. (l) Kalyani, D.;
Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. Chem. Soc. 2005,
127, 7330. For examples at sp3 C-H bonds next to heteroatoms, see:
(m) Pastine, S. J.; Gribkov, D. V.; Sames, D. J. Am. Chem. Soc. 2006,
128, 14220. (n) Dyker, G. J. Org. Chem. 1993, 58, 6426.
Figure 1. Calculated TS for concerted palladation-deprotonation. Select
H atoms have been removed for clarity. Relevant two- and three-center
bond orders (red), distances (Å) (black), and NPA-derived atomic charges
(blue) are shown. The three-center covalent interaction and charge
transferred (CT) from the C-H bond to the metal-based acceptor orbital
are shown at right.13
Scheme 2. Mechanistic Rationale for Site Selectivity
(3) Guari, Y.; Sabo-Etienne, S.; Chaudret, B. Eur. J. Inorg. Chem. 1999, 1047.
(4) (a) Lane, B. S.; Sames, D. Org. Lett. 2004, 6, 2897. (b) Lanes, B. S.;
Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050. (c) Park,
C.-H.; Ryabova, V.; Seregin, I. V.; Sromek, A. W.; Gevorgyan, V. Org.
Lett. 2004, 6, 1159.
(5) (a) Davies, D. L.; Donald, S. M. A.; Macgregor, S. A. J. Am. Chem. Soc.
2005, 127, 13754. (b) Garcia-Cuadrado, D.; Braga, A. A. C.; Maeras, F.;
Echavarren, A. M. J. Am. Chem. Soc. 2006, 128, 1066. (c) Lafrance, M.;
Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am. Chem. Soc. 2006, 128,
8754.
in the gas phase and 27.7 kcal/mol in benzene (Supporting
Information, Table S1). At the TS, agostic, three-center two-electron
interactions occur14 between the C-H σ bond and the PdII atom
(the three-center bond order BPdCH15 is 0.10) resulting in a significant
weakening of the C-H bond (the Mayer bond order16 for the C-H
bond is 0.37 vs 0.94 for the nonbroken C-H bond). Thus, the
energetic cost of C-H bond cleavage is compensated for by the
Pd-C and Pd-H interactions that involve electron donation (∼0.42
e-) from both the C-H bond to the PdII atom, and the simultaneous
formation of the O-H bond (Figures 1, S2-S4).
(6) Boller, T. M.; Murphy, J. M.; Hapke, M.; Ishiyama, T.; Miyaura, N.;
Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 14263.
(7) (a) Lersch, M.; Tislet, M. Chem. ReV. 2005, 105, 2471. (b) Shilov, A. E.;
Shul’pin, G. B. Chem. ReV. 1997, 97, 2879.
(8) For illustrative mechanistic work dealing with alkane oxidation, see: (a)
Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1996, 118,
5961. (b) Siegbahn, P. E. M.; Crabtree, R. H. J. Am. Chem. Soc. 1996,
118, 4442. (c) Zh, H.; Ziegler, T. J. Organomet. Chem. 2006, 691, 4486.
The computed value of the deuterium kinetic isotope effect (kH/
kD) via this pathway was found to be 3.6 at 115 °C (Table S1).
Considering that this calculation does not include any rate enhance-
ment due to quantum mechanical tunneling,17 the calculated kH/kD
is consistent with the experimentally determined value of 5.4 (
0.3. Furthermore, the reaction barrier at a secondary carbon to give
intermediate 16 (-CH2CH3) was found to be 5.5 kcal mol-1 higher
than the ∆Gq for reaction at the -CH3 group to give 15, correlating
very well with the experimentally observed selectivity for reaction
at methyl groups (Scheme 2, Table S1, Figure S2). Similarly, the
reaction at more remote positions, as in the formation of 17, is
also less kinetically and thermodynamically favored (Table S1).
These results point to new opportunities in the catalytic formation
of C-C bonds that are less reliant on stoichiometric and wasteful
substrate pre-activation, particularly with palladium(0)/(II) catalysis.
The mechanistic insights regarding the intimate role of the base
and the 3-center agostic interactions at the sp3 C-H bond cleaving
TS should also facilitate the development of new catalysts and
transformations.
(9) For example, see: (a) Kataoka, K.-I.; Shiota, T.; Takeyasu, T.; Minoshima,
T.; Watanabe, K.; Tanaka, H.; Mochizuki, T.; Taneda, K.; Ota, M.; Tanabe,
H.; Yamaguchi, H. J. Med. Chem. 1996, 39, 1262. (b) Shi, G. Q.;
Dropinski, J. F.; Zhang, Y.; Santini, C.; Sahoo, S. P.; Berger, J. P.;
MacNaul, K. L.; Zhou, G.; Agrawal, A.; Alvaro, R.; Cai, T.-q.; Hernandez,
M.; Wright, S. D.; Moller, D. E.; Heck, J. V.; Meinke, P. T. J. Med.
Chem 2005, 48, 5589. (c) Tamura, K.; Kato, Y.; Ishikawa, A.; Kato, Y.;
Himori, M.; Yoshida, M.; Takashima, Y.; Suzuki, T.; Kawabe, Y.; Cynshi,
O.; Kodama, T.; Niki, E.; Shimizu, M. J. Med. Chem. 2003, 46, 3083.
(d) Ohkawa, S.; Fukatsu, K.; Miki, S.; Hashimoto, T.; Sakamoto, J.; Doi,
T.; Nagai, Y.; Aono, T. J. Med. Chem. 1997, 40, 559.
(10) For example, see: (a) Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am.
Chem. Soc. 2004, 126, 9542. (b) Giri, R.; Chen, X.; Yu, J.-Q. Angew.
Chem., Int. Ed. 2005, 44, 2112.
(11) Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496.
(12) The most common route to simple analogues involves phenol alkylation
with an appropriately substituted allyl fragment followed by a Claisen
rearrangement and subsequent cationic ring closure. See for example ref
9a. This approach relies on sufficient substituent stabilization of the
carbocation which cannot occur when electron-withdrawing groups are
present.
(13) See the Supporting Information for details.
(14) Brookhart, M.; Green, M. L. H.; Parkin, G. Proc. Natl. Acad. Sci. U.S.A.
2007, 104, 6908.
(15) (a) Sannigrahi, A. B.; Kar, T. Chem. Phys. Lett. 1990, 173, 569. (b)
Giambiagi, M.; Giambiagi, M. S.; Mundim, K. C. Struct. Chem. 1990, 1,
123.
(16) Mayer, I. Chem. Phys. Lett. 1983, 97, 270.
(17) Garrett, B. C.; Truhlar, D. G. J. Chem. Phys. 1980, 72, 3460.
Acknowledgment. We thank NSERC, the Research Corpora-
tion, the Ontario government, Merck Frosst, Boehringer Ingelheim,
Astra Zeneca, KCT and Merck Inc. for additional support. We thank
Professor Tom K. Woo for use of the computing facilities funded
by the Canada Foundation for Innovation and the Ontario Research
Fund.
JA076588S
9
J. AM. CHEM. SOC. VOL. 129, NO. 47, 2007 14571