Journal of the American Chemical Society
Article
chai, J.; Dumas, A. M.; Bode, J. W. Angew. Chem., Int. Ed. 2012, 51,
10954.
(4) (a) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001,
101, 2067. (b) Yue, C. J.; Liu, Y.; He, R. J. Mol. Catal. A: Chem. 2006,
259, 17.
The results of a combined experimental and theoretical
mechanistic study are in support of a chain-walking process that
operates by iterative migratory insertion/β-H elimination
sequences for both allylic and homoallylic alcohols. The
irreversible nature of the first migratory insertion across the
CC bond constitutes one of the key features of the proposed
mechanism. The rotation around the newly formed Pd−C
bond was identified as the turnover-determining step for the
productive isomerization of E-configured substrates. This
process has markedly lower activation energy for the isomer-
ization of (Z)-allylic alcohols. A postreaction insertion of [Pd−
H] across the CO bond of the carbonyl products has been
identified experimentally and reproduced in silico. Interestingly,
we found experimentally that the catalyst does not dissociate
from the substrate in the isomerization of allylic alcohols,
whereas it disengages during the isomerization of alkenyl
alcohols when an additional substituent is present on the alkyl
chain. Finally, the effect of the bite angle of the chelating
bisphosphine ligand on the catalyst activity has been well-
reproduced computationally. This subtle structural change may
be important for the development of improved generation of
achiral and chiral catalysts.
(5) (a) van der Drift, R. C.; Bouwman, E.; Drent, E. J. Organomet.
Chem. 2002, 650, 1. (b) Uma, R.; Crev
́
isy, C.; Gree
́
, R. Chem. Rev.
2003, 103, 27. (c) Kuznik, N.; Krompiec, S. Coord. Chem. Rev. 2007,
́
251, 222. (d) Krompiec, S.; Krompiec, M.; Penczek, R.; Ignasiak, H.
Coord. Chem. Rev. 2008, 252, 1819. (e) Aubert, C.; Fensterbank, L.;
Garcia, P.; Malacria, M.; Simonneau, A. Chem. Rev. 2011, 111, 1954.
(f) Mantilli, L.; Mazet, C. Chem. Lett. 2011, 40, 341. (g) Ahlsten, N.;
Bartoszewicz, A.; Martin-Matute, B. Dalton Trans. 2012, 41, 1660.
(6) Seminal contribution: (a) Kumobayashi, H.; Akutagawa, S.;
Otsuka, S. J. Am. Chem. Soc. 1978, 100, 3949. For recent reviews, see:
(b) Akutagawa, S. In Comprehensive Asymmetric Catalysis; Jacobsen, E.
N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol. 2,
Chapter 23, pp 813−832. (c) Akutagawa, S. In Comprehensive
Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.;
Springer: Berlin, 1999; Vol. 3, Chapter 41.1, pp 1461−1472. (d) Fu,
G. C. In Modern Rhodium-Catalyzed Organic Reactions; Evans, P. A.,
Ed.; Wiley-VCH: Weinheim, Germany, 2005; Chapter 4, pp 79−91.
(7) (a) Tanaka, K.; Qiao, S.; Tobisu, M.; Lo, M. M.-C.; Fu, G. C. J.
Am. Chem. Soc. 2000, 122, 9870. (b) Tanaka, K.; Fu, G. C. J. Org.
Chem. 2001, 66, 8177. For a related contribution, see: (c) Chapuis,
C.; Barthe, M.; de Saint Laumer, J.-Y. Helv. Chim. Acta 2001, 84, 230.
(8) (a) Mantilli, L.; Mazet, C. Tetrahedron Lett. 2009, 50, 4141.
ASSOCIATED CONTENT
* Supporting Information
■
S
(b) Mantilli, L.; Ger
Chem., Int. Ed. 2009, 48, 5413. (c) Mantilli, L.; Mazet, C. Chem.
Commun. 2010, 46, 445. (d) Mantilli, L.; Gerard, D.; Torche, S.;
Besnard, C.; Mazet, C. Chem.Eur. J. 2010, 16, 12736. (e) Mantilli,
L.; Gerard, D.; Besnard, C.; Mazet, C. Eur. J. Inorg. Chem. 2012, 3320.
́
ard, D.; Torche, S.; Besnard, C.; Mazet, C. Angew.
Experimental procedures, spectral data and crystallographic
data (CIF) for complexes 11 (CCDC 1020394) and 13
(CCDC 1020782), computational data, and full ref 24. This
material is available free of charge via the Internet at http://
́
́
(f) Li, H.; Mazet, C. Org. Lett. 2013, 15, 6170. For other work using
iridium, see: (g) Li, J.-Q.; Peters, B.; Andersson, P. G. Chem.Eur. J.
2011, 17, 11143.
AUTHOR INFORMATION
Corresponding Author
■
(9) (a) Arai, N.; Sato, K.; Azuma, K.; Ohkuma, T. Angew. Chem., Int.
Ed. 2013, 52, 7500. For related contributions, see: (b) Sun, Y.;
LeBlond, C.; Wang, J.; Blackmond, D. G.; Lauirada, J.; Sowa, J. R., Jr. J.
Am. Chem. Soc. 1995, 117, 12647. (c) Bizet, V.; Pannecoucke, X.;
Renaud, J.-L.; Cahard, D. Angew. Chem., Int. Ed. 2012, 51, 6467.
(d) Wu, R.; Beauchamps, M. G.; Laquidara, J. M.; Sowa, J. R., Jr.
Angew. Chem., Int. Ed. 2012, 51, 2106.
(10) (a) Kitamura, M.; Manabe, K.; Noyori, R. Tetrahedron Lett.
1987, 28, 4719. (b) Hiroya, K.; Kurihara, Y.; Ogasawara, K. Angew.
Chem., Int. Ed. Engl. 1995, 34, 2287. (c) Ito, M.; Kitahara, S.; Ikariya,
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the University of Geneva and
Roche. We thank Prof. Tomasz A. Wesolowski and Dr. Amalia
Poblador-Bahamonde (University of Geneva) for offering us
́
́
T. J. Am. Chem. Soc. 2005, 127, 6172. (d) Fernandez-Zumel, M. A.;
Lastra-Barreira, B.; Scheele, M.; Díez, J.; Crochet, P.; Gimeno, J.
Dalton Trans. 2010, 39, 7780.
́
access to their computational facilities. We thank Dr. Celine
Besnard (University of Geneva) for assistance with X-ray
diffraction measurements and crystal structure resolution. All of
the molecular structures were generated using CYLview.31 One
referee is acknowledged for suggesting important control
labeling experiments.
(11) (a) Grotjahn, D. B.; Larsen, C. R.; Gustafson, J. L.; Nair, R.;
Sharma, A. J. Am. Chem. Soc. 2007, 129, 9592. For related studies from
the same group, see: (b) Larsen, C. R.; Grotjahn, D. B. J. Am. Chem.
Soc. 2012, 134, 10357. (c) Erdogan, G.; Grotjahn, D. B. Org. Lett.
2014, 16, 2818. For a related study, see: (d) Ishibashi, K.; Takahashi,
M.; Yokota, Y.; Oshima, K.; Matsubara, S. Chem. Lett. 2005, 34, 664.
(12) For a general review of palladium hydrides, see: (a) Grushin, V.
V. Chem. Rev. 1996, 96, 2011. For important contributions on Pd-
catalyzed isomerization processes, see: (b) Ionescu, A.; Ruppel, M.;
Wendt, O. F. J. Organomet. Chem. 2006, 691, 3806. (c) Coquerel, Y.;
REFERENCES
■
(1) (a) Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and
Practice; Oxford University Press: New York, 1998. (b) Sheldon, R. A.;
Arends, I.; Hanefeld, U. Green Chemistry and Catalysis; Wiley-VCH:
Weinheim, Germany, 1997. (c) Anastas, P.; Eghbali, N. Chem. Soc. Rev.
2010, 39, 301.
́
Bremond, P.; Rodriguez, J. J. Organomet. Chem. 2007, 692, 4805.
(d) Lim, H. J.; Smith, C. R.; RajanBabu, T. V. J. Org. Chem. 2009, 74,
4565. (e) Gauthier, D.; Lindhardt, A. T.; Olsen, E. P. K.; Overgaard, J.;
Skrydstrup, T. J. Am. Chem. Soc. 2010, 132, 7998. (f) Sabitha, G.;
Nayak, S.; Bhikshapathi, M.; Yadav, J. S. Org. Lett. 2011, 13, 382. For a
related account, see: (g) Widenhoefer, R. A. Acc. Chem. Res. 2002, 35,
905.
(13) (a) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem.
Soc. 1995, 117, 6414. (b) Johnson, L. K.; Mecking, S.; Brookhart, M. J.
Am. Chem. Soc. 1996, 118, 267. (c) Guan, Z.; Cotts, P. M.; McCord, E.
F.; McLain, S. J. Science 1999, 283, 2059. (d) Berkefeld, A.; Mecking,
(2) (a) Trost, B. M. Science 1991, 254, 1471. (b) Trost, B. M. Angew.
Chem., Int. Ed. Engl. 1995, 34, 259. (c) Wender, P. A.; Verma, V. A.;
Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40. (d) Wender,
P. A.; Miller, B. L. Nature 2009, 460, 197. (e) Burns, N. Z.; Baran, P.
S.; Hoffmann, R. W. Angew. Chem., Int. Ed. 2009, 48, 2854.
(3) (a) Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz,
A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vols. 1−3. (b) Walsh,
P. J.; Kozlowski, M. C. Fundamentals of Asymmetric Catalysis;
University Science Books: Sausalito, CA, 2009. (c) Hoveyda, A. H.;
Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307. (d) Mahatthanan-
L
dx.doi.org/10.1021/ja508736u | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX