Macromolecules
Article
AUTHOR INFORMATION
■
Corresponding Author
4065 (J.-L.H.).
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This study was supported financially by the National Science
Council, Taiwan, Republic of China, under Contracts NSC
102-2221-E-110-084-MY3 and NSC 102-2221-E-110-080-.
REFERENCES
■
Figure 12. Emission spectra of the alkaline TP-iPPLG(L) solution
(10−4 M, pH = 13.3) at different amounts of BSA from 0 to 5 mg/mL
(λex = 325 nm).
(1) Kricheldorf, H. R. Angew. Chem., Int. Ed. 2006, 45, 5752−5784.
(2) Deming, T. J. Prog. Polym. Sci. 2007, 32, 858−875.
(3) Deming, T. J. In Peptide Hybrid Polymers; Polypeptide and
Polypeptide Hybrid Copolymer Synthesis via NCA Polymerization; Klok,
H. A., Schlaad, H., Eds.; Springer: Berlin, 2006; pp 1−18.
(4) Munoz, V.; Serrano, L. Nat. Struct. Biol. 1994, 1, 399−409.
(5) Fiori, W. R.; Lundberg, K. M.; Millhauser, G. L. Nat. Struct. Biol.
1994, 1, 374−377.
precipitation of the reaction products. Water-insoluble products
were thus produced when BSA reacted to TP-iPPLG(L) chains
in the rigid α-helix or β-sheet structures.
(6) Goodman, C. M.; Choi, S.; Shandler, S.; DeGrado, W. F. Nat.
Chem. Biol. 2007, 3, 252−262.
CONCLUSIONS
(7) Fezoui1, Y.; Hartley, D. M.; Walsh1, D. M.; Selkoe1, D. J.;
Osterhout, J. J.; Teplow, D. B. Nat. Struct. Biol. 2000, 7, 1095−1099.
(8) Drin, G.; Casellal, J.-F.; Gautier, R.; Boehmer, T.; Schwartz, T.
U.; Drin, B. A. Nat. Struct. Mol. Biol. 2007, 14, 138−146.
(9) Bryson, J. W.; Betz, S. F.; Lu, H. S.; Suich, D. J.; Zhou, H. X.;
O’Neil, K. T.; DeGrado, W. F. Science 1995, 270, 935−941.
(10) Bang, D.; Gribenko, A. V.; Tereshko, V.; Kossiakoff, A. A.; Kent,
S. B.; Makhatadze, G. I. Nat. Chem. Biol. 2006, 2, 139−143.
(11) Zhang, S. G. Nat. Biotechnol. 2003, 21, 1171−1178.
(12) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294,
1684−1688.
■
A new series of water-soluble TP-iPPLG polymers containing
an AEE-active fluorescent terminal and ionic side groups can be
successfully prepared from a two-step reaction scheme,
including the ring-opening polymerization of PLG-NCA
monomer, initiated by an AIE-active initiator of TP-NH2, to
generate the neutral TP-PPLG and the following click reaction
on TP-PPLG to introduce the desired ionic pendant groups.
The TP-iPPLG polymers are AEE-active materials according to
the emission behavior in H2O/DMF solution mixtures.
Ionic pendant group and MW of the polypeptides are found
to affect the secondary structure of the resulting peptide chain.
The ionic sulfonate pendant group in TP-iPPLGs enhances the
content of the α-helical structure when compared to the neutral
precursors of TP-PPLGs. With higher MW, solid TP-
iPPLG(H) also possesses higher fraction of α-helical chains
as compared to low-MW TP-iPPLG(L). Since α-helical chains
are efficient in blocking the intermolecular aggregation of the
TP units, the emission spectrum of solid TP-iPPLG(H)
therefore contains less aggregate to monomer emission ratio
as compared to TP-iPPLG(L) with lower α-helix content.
The ionic sulfonate pendant groups of TP-iPPLG protect the
peptide main chain from attacking of the acidic species.
Therefore, TP-iPPLGs are rather stable in acidic media;
however, the stable α-helical structures are transformed into
random coil chains in the highly alkaline solution. Emission of
the alkaline TP-iPPLG solution contains a large aggregate
emission with the intensity much higher than the emission in
the acidic and neutral media. Effect of secondary structure on
the AEE-activity was therefore demonstrated. The alkaline
solution of TP-iPPLG(L) can be a probe for the detection of
BSA, and the corresponding emission spectra exhibit the large
reduction of the aggregate emission with increasing dosage of
BSA in the solution.
(13) Nowak1, A. P.; Breedveld, V.; Pakstis, L.; Ozbas, B.; Pine, D. J.;
Pochan, D.; Deming, T. J. Nature 2002, 417, 424−428.
(14) Lu, H.; Wang, J.; Bai, Y.; Lang, J. W.; Liu, S.; Lin, Y.; Cheng, J.
Nat. Commun. 2011, 2, 1−9.
(15) Zhang, Y.; Lu, H.; Lin, Y.; Cheng, J. Macromolecules 2011, 44,
6641−6644.
(16) Lin, Y. C.; Wang, P. I.; Kuo, S. W. Soft Matter 2012, 8, 9676−
9684.
(17) Doty, P.; Bradbury, J. H.; Holtzer, A. M. J. Am. Chem. Soc. 1956,
78, 947−954.
(18) Pokorna,
1, 185−190.
́
́ ́
V.; Vyprachticky, D.; Pecka, J. Macromol. Biosci. 2001,
(19) Kim, K. T.; Park, C.; Vandermeulen, G. W. M.; Rider, D. A.;
Kim, C.; Winnik, M. A.; Manners, I. Angew. Chem., Int. Ed. 2005, 117,
8178−8182.
(20) Rubatat, L.; Kong, X.; Jenekhe, S. A.; Ruokolainen, J.; Hojeij,
M.; Mezzenga, R. Macromolecules 2008, 41, 1846−1852.
(21) Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.;
Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun.
2001, 1740−1741.
(22) Tang, B. Z.; Zhan, X.; Yu, G.; Lee, P. P. S.; Liu, Y.; Zhu, D. J.
Mater. Chem. 2001, 11, 2974−2981.
(23) Aggregation-Induced Emission: Fundamentals; Qin, A., Tang, B.
Z., Eds.; John Wiley & Sons, Ltd.: New York, 2013.
(24) Liu, J.; Lam, J. W. Y.; Tang, B. Z. J. Inorg. Organomet. Polym.
2009, 19, 249−285.
(25) Hong, y.; Lam, J. W. Y.; Tang, B. Z. Chem. Commun. 2009,
4332−4353.
ASSOCIATED CONTENT
■
(26) Wu, J.; Liu, W.; Ge, J.; Zhang, H.; Wang, P. Chem. Soc. Rev.
2011, 40, 3483−3495.
S
* Supporting Information
Figures S1−S7. This material is available free of charge via the
(27) Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2011, 40,
5361−5388.
4046
dx.doi.org/10.1021/ma500886v | Macromolecules 2014, 47, 4037−4047