306
E. Ciepichal et al. / Chemistry and Physics of Lipids 164 (2011) 300–306
Consistent results obtained in this study showing the effects
Janas, T., Chojnacki, T., Swiezewska, E., Janas, T., 1994. The effect of undecaprenol on
bilayer lipid membranes. Acta Biochim. Pol. 41, 351–358.
Janas, T., Nowotarski, K., Gruszecki, W.I., Janas, T., 2000. The effect of hexadecaprenol
on molecular organization and transport properties of model membranes. Acta
Biochim. Pol. 47, 661–673.
induced by intercalation of Pren-12 isomers into PC bilayers, i.e.
decreased stability and modulated permeability of these mem-
␣-cis vs. trans-Pren-12 for phospholipid bilayers might possibly
also suggest the possible effect of polyprenols on lateral segre-
gation of lipids in model and biological membranes, as predicted
logical membranes. The radius of such pores, induced by Pren-16 in
POPC bilayers, estimated from a decrease in the activation energy
of ion migration across the lipid bilayers, was predicted to be 2 nm
(Janas et al., 2000). Such channels might be of functional impor-
tance for intracellular trafficking of intermediates and metabolites,
e.g. glycoconjugate translocation during biosynthesis of glycopro-
teins and peptidoglycans. Furthermore, although different effect
of the ␣-isomers (trans vs. cis) of Pren-12 on membrane perme-
ability for glucose requires more detailed studies it nevertheless
might point towards isomerization of polyprenols as the putative
mechanism responsible for regulation of the permeability of cellu-
lar membranes.
Janas, T., Walin´ ska, K., 2000. The effect of hexadecaprenyl diphosphate on phospho-
lipid membranes. Biochim. Biophys. Acta 1464, 273–283.
Jemiola-Rzeminska, M., Kruk, J., Skowronek, M., Strzalka, K., 1996. Location
of ubiquinone homologues in liposome membranes studied by fluores-
cence anisotropy of diphenyl-hexatriene and trimethylammonium-diphenyl-
hexatriene. Chem. Phys. Lipids 79, 55–63.
Jemioła-Rzemin´ ska, M., Latowski, D., Strzałka, K., 2001. Incorporation of plasto-
quinone and ubiquinone into liposomes membranes studied by HPLC analysis.
The effect of side chain length and redox state of quinone. Chem. Phys. Lipids
110, 85–94.
Jemiola-Rzeminska, M., Mys´liwa-Kurdziel, B., Strzałka, K., 2002. The influence of
structure and redox state of prenylquinones on thermotropic phase behavior of
phospholipid in model membranes. Chem. Phys. Lipids 114, 169–180.
Koynova, R., Caffrey, M., 1998. Phases and phase transitions of the phosphatidyl-
cholines. Biochim. Biophys. Acta 1376, 91–145.
Kruk, J., Jemiola-Rzeminska, M., Strzalka, K., 1997. Plastoquinol and ␣-tocopherol
quinol are more active than ubiquinol and ␣-tocopherol in inhibition of lipid
peroxidation. Chem. Phys. Lipids 87, 73–80.
Kröger, A., 1978. Determination of contents and redox state of ubiquinone and
menaquinone. In: Fleischer, S., Packer, L. (Eds.), Methods in Enzymology, vol.
53. Academic Press, New York, pp. 580–591.
Marczewski, A., Ciepichal, E., Le Xuan Canh, Tran The Bach, Swiezewska, E., Cho-
jnacki, T., 2007. The search for polyprenols in dendroflora of Vietnam. Acta
Biochim. Pol. 54, 727–732.
Mayer, L.D., Hope, M.J., Cullis, P.R., 1985. Solute distribution and trapping efficiences
observed in freeze-thawed multilamellar vesicles. Biochim. Biophys. Acta 817,
193–196.
Acknowledgements
McCloskey, M.A., Troy, F.A., 1980. Paramagnetic isoprenoid carrier lipids. 2. Disper-
sion and dynamics in lipid membranes. Biochemistry 19, 2061–2066.
Murgolo, N.J., Patel, A., Stivala, S.S., Wong, T.K., 1989. The conformation of dolichol.
Biochemistry 28, 253–260.
Olson, F., Hunt, C.A., Szoka, F.C., Vail, W.J., Papahadjopoulos, D., 1979. Preparation
of liposomes of defined size distribution by extrusion through polycarbonate
membranes. Biochim. Biophys. Acta 557, 9–23.
Skorupinska-Tudek, K., Bienkowski, T., Olszowska, O., Furmanowa, M., Chojnacki,
T., Danikiewicz, W., Swiezewska, E., 2003. Divergent pattern of polyisoprenoid
alcohols in the tissues of Coluria geoides: a new electrospray ionization MS
approach. Lipids 38, 981–990.
Authors are grateful to Prof. Tadeusz Chojnacki, IBB PAS, War-
saw, for stimulating discussion. This investigation was supported
by grants from the Polish Ministry of Science and Education MNiSW
NN303 311837 and 50/N-DFG/2007/0, grant funded by the Pol-
ish National Cohesion Strategy Innovative Economy UDA-POIG
01.03.01-14-036/09 and the Integrated Regional Operational Pro-
gramme - Mazovia grant no. 13/179/09.
Skowronek, M., Jemioła-Rzemin´ ska, M., Kruk, J., Strzałka, K., 1996. Influence of the
redox state of ubiquinones and plastoquinones on the order of lipid bilayers
studied by fluorescence anisotropy of diphenylhexatriene and trimethylammo-
nium diphenylhexatriene. Biochim. Biophys. Acta 1280, 115–119.
Slotte, J.P., 2009. Lipid interactions, domain formation, and lateral structure of mem-
branes. Biochim. Biophys. Acta 1788, 1–9.
Stone, K.J., Wellburn, A.R., Hemming, F.W., Pennock, J.F., 1967. The characterization
of ficaprenol-10-11 and 12 from the leaves of Ficus elastica (decorative ruber
plant). Biochem. J. 102, 325–330.
References
Bajda, A., Konopka-Postupolska, D., Krzymowska, M., Hennig, J., Skorupinska-
Tudek, K., Surmacz, L., Wojcik, J., Matysiak, Z., Chojnacki, T., Skorzynska-Polit,
E., Drazkiewicz, M., Patrzylas, P., Tomaszewska, M., Kania, M., Swist, M.,
Danikiewicz, W., Piotrowska, W., Swiezewska, E., 2009. Role of polyisoprenoids
in tobacco resistance against biotic stresses. Physiol. Plant. 135, 351–364.
Berglund, A.H., Norberg, P., Quartacci, M.F., Nilsson, R., Liljenberg, C.S., 2000.
Properties of plant plasma membrane lipid models—bilayer permeability and
monolayer behaviour of glucosylceramide and phosphatidic acid in phospho-
lipids mixtures. Physiol. Plant. 109, 117–122.
Swiezewska, E., Dallner, G., Andersson, B., Ernster, L., 1993. Biosynthesis of
ubiquinone and plastoquinone in the endoplasmic reticulum–Golgi membranes
of spinach leaves. J. Biol. Chem. 268, 1494–1499.
Berglund, A.H., Quartacci, M.F., Calucci, L., Navari-Izzo, F., Pinzino, C., Liljenberg, C.,
2002. Alterations of wheat root plasma membrane lipid composition induced
by copper stress result in changed physicochemical properties of plasma mem-
brane lipid vesicles. Biochim. Biophys. Acta 1564, 466–472.
Berglund, A.H., Larsson, K.E., Liljenberg, C.S., 2004. Permeability behaviour of lipid
vesicles prepared from plant plasma membranes—impact of compositional
changes. Biochim. Biophys. Acta 1682, 11–17.
Chojnacki, T., Dallner, G., 1988. The biological role of dolichol. Biochem. J. 251, 1–9.
Ciepichal, E., Wojcik, J., Bienkowski, T., Kania, M., Swist, M., Danikiewicz, W.,
Marczewski, A., Hertel, J., Matysiak, Z., Swiezewska, E., Chojnacki, T., 2007. Allo-
prenols: novel ␣-trans-polyprenols of Allophylus caudatus. Chem. Phys. Lipids
147, 103–112.
Swiezewska, E., Danikiewicz, W., 2005. Polyisoprenoids: structure, biosynthesis and
function. Prog. Lipid Res. 44, 235–258.
Valtersson, C., Van Duijn, G., Verkleij, A.J., Chojnacki, T., De Kruijff, B., Dallner, G.,
1985. The influence of dolichol, dolichol esters, and dolichyl phosphate on phos-
pholipid polymorphism and fluidity in model membranes,. J. Biol. Chem. 260,
2742–2751.
Vigo, C., Grossman, S.H., Drost-Hannsen, W., 1984. Interaction of dolichol and
dolichyl phosphate with phospholipid bilayers. Biochim. Biophys. Acta 774,
221–226.
Wang, X., Mansourian, A.R., Quinn, P.J., 2008. The effect of dolichol on the structure
and phase behaviour of phospholipid model membranes. Mol. Membr. Biol. 25,
547–556.
Clement, N.R., Gould, J.M., 1981. Pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) as a
probe of internal aqueous hydrogen ion concentration in phospholipid vesicles.
Biochemistry 20, 1534–1538.
Weinstein, J.N., Klausner, R.D., Innerarity, T., Ralston, E., Blumenthal, R., 1981. Phase
transition release, a new approach to the interaction of proteins with lipid vesi-
cles. Application to lipoproteins. Biochim. Biophys. Acta 647, 270–284.
Zhou, G.P., Troy II, F.A., 2003. Characterization by NMR and molecular modeling of
the binding of polyisoprenols and polyisoprenyl recognition sequence peptides:
3D structure of the complexes reveals sites of specific interactions. Glycobiology
13, 51–71.
Zhou, G.P., Troy, F.A., 2005. NMR study of the preferred membrane orientation
of polyisoprenols (dolichol) and the impact of their complex with polyiso-
prenyl recognition sequence peptides on membrane structure. Glycobiology 15,
347–359.
Degli Esposti, M., Bertoli, E., Parenti-Castelli, G., Fato, R., Mascarello, Lenaz, G., 1981.
Incorporation of ubiquinone homologs into lipid vesicles and mitochondrial
membranes. Arch. Biochem. Biophys. 210, 21–32.
de Ropp, J.S., Troy, F.A., 1985. 2H NMR investigation of the organization and dynamics
of polyisoprenols in membranes. J. Biol. Chem. 260, 15669–15674.
Gutkowska, M., Bien´ kowski, T., Vo Si Hung, Wanke, M., Hertel, J., Danikiewicz, W.,
Swiezewska, E., 2004. Proteins are polyisoprenylated in A. thaliana. Biochem.
Biophys. Res. Commun. 322, 998–1004.