1967
S.-r. Guo, Y.-q. Yuan
Letter
Synlett
Fuchs.13 When the radical scavenger TEMPO was added into
the reaction system, no product was obtained, which indi-
cates that the transformation may proceed via a radical pro-
cess (Scheme 4, a). In the absence of alcohol, only denitro
methylation product was obtained and the self-coupling of
β-nitrostyrenes was not observed, which suggested that the
styrene radical is not formed in the reaction system
(Scheme 4, b). Moreover, an intermolecular kinetic isotope
effect (KIE) experiment was carried out for isopropanol,
and a significant KIE value of kH/kD = 4.8 was observed
(Scheme 4, c). It indicates that the rate-determining step of
the sp3 C–H bond cleavage should be involved in this proce-
dure. Interestingly, (Z)-1a was used to react with 2a under
the optimized conditions, the same product (E)-3aa was
also obtained in 80% yield (Scheme 4, d).
via activation of the C(sp3)–H bond in this work might be
novel and attractive in radical chemistry. The alkyl-substi-
tuted β-nitroalkenes are not suitable to this protocol, and
the β-alkyl-substituted β-nitrostyrenes gave the desired
products in low yield, which limits the scope of application.
Further investigation of this procedure, including extension
of the substrate scope and catalytic cycle, is under way in
our laboratory.
Acknowledgment
This work was supported by Normal Foundation of Zhejiang Educa-
tion Department (No.Y201329988), Research on Public Welfare Tech-
nology Application Projects of Lishui, China (2014GYX049), and NSFC
of China (No. 21276068).
Based on the above results and similar reported litera-
ture,7–9,11 a plausible radical addition–elimination mecha-
nism is illustrated in Scheme 5. First, homolytic cleavage of
DTBP gives the tert-butoxy radical catalyzed by Cu(OAc)2,
which abstracts the α-hydrogen of isopropanol to form an
α-carbon-centered radical. Then, addition of the α-carbon-
centered radical to the β-position of the double bond would
give a benzylic intermediate. Finally, under the help of hy-
pervalent copper complex which may be formed in the re-
action process, the more stable E-allylic alcohols were
Supporting Information
Supporting information for this article is available online at
S
u
p
p
o
nrtIo
g
f
rmoaitn
S
u
p
p
ortiInfogrmoaitn
References and Notes
(1) (a) Minisci, F.; Citterio, A.; Vismara, E. Tetrahedron 1985, 41,
4157. (b) Minisci, F.; Vismara, A.; Fontana, F.; Morini, G.;
Serravalle, M. J. Org. Chem. 1986, 51, 476. (c) Coppa, F.; Fontana,
F.; Lazzarini, E.; Minisci, F.; Pianese, G.; Zhao, L. Chem. Lett.
1992, 1295. (d) Fontana, F.; Minisci, F.; Yan, Y. M.; Zhao, L. Tetra-
hedron Lett. 1993, 34, 2517.
(2) Correia, C. A.; Yang, L.; Li, C.-J. Org. Lett. 2011, 13, 4581.
(3) (a) Shi, L.; Tu, Y.-Q.; Wang, M.; Zhang, F.-M.; Fan, C.-A.; Zhao, Y.-
M.; Xia, W.-J. J. Am. Chem. Soc. 2005, 127, 10836. (b) Jiang, Y.-J.;
Tu, Y.-Q.; Zhang, E.; Zhang, S.-Y.; Cao, K.; Shi, L. Adv. Synth. Catal.
2008, 350, 552. (c) Zhang, S.-Y.; Tu, Y.-Q.; Fan, C.-A.; Jiang, Y.-J.;
Shi, L.; Cao, K.; Zhang, E. Chem. Eur. J. 2008, 14, 10201. (d) Zhang,
S.-Y.; Tu, Y.-Q.; Fan, C.-A.; Zhang, F.-M.; Shi, L. Angew. Chem. Int.
Ed. 2009, 48, 8761.
(4) (a) Oka, R.; Nakayama, M.; Sakaguchi, S.; Ishii, Y. Chem. Lett.
2006, 35, 1104. (b) Liu, Z.-Q.; Sun, L.; Wang, J.-G.; Han, J.; Zhao,
Y.-K.; Zhou, B. Org. Lett. 2009, 11, 1437.
(5) Cui, Z.; Shang, X.; Shao, X.-F.; Liu, Z.-Q. Chem. Sci. 2012, 3, 2853.
(6) Zhao, Z.; Xue, W.; Gao, Y.; Tang, G.; Zhao, Y. Chem. Asian J. 2013,
8, 713.
•
achieved via a rapid elimination of the NO2 radical. Unfor-
tunately, the exact role of copper salts and how it catalyzes
this transformation is still unclear, but it should be noted
that the reaction did not work well in the absence of the
copper catalyst.
Cu(OAc)2
O
O
+
•
O
+
OH
OH
•
t-BuOH
•
O
rate-determining
fast
OH
OH
•
NO2
OH
+
Ar
•
Ar
NO2
(7) (a) Meng, Y.; Guo, L.-N.; Wang, H.; Duan, X.-H. Chem. Commun.
2013, 49, 7540. (b) Liu, Z.-Q.; Sun, L.; Wang, J.-G.; Han, J.; Zhao,
Y.-K.; Zhou, B. Org. Lett. 2009, 11, 1437. (c) He, T.; Yu, L.; Zhang,
L.; Wang, L.; Wang, M. Org. Lett. 2011, 13, 5016.
OH
•
•
– NO2
Ar
Ar
fast
NO2
(8) (a) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
(b) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M.
C. Chem. Rev. 2013, 113, 6234. (c) Bellina, F.; Rossi, R. Chem. Rev.
2010, 110, 3850. (d) Sun, C. L.; Li, B. J.; Shi, Z. J. Chem. Rev. 2011,
111, 1293. (e) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.;
Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890. (f) Cho, S.
H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068.
(g) Ramirez, T. A.; Zhao, B.; Shi, Y. Chem. Soc. Rev. 2012, 41, 931.
(h) Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Andy, T. S.; Liu, X. Chem.
Soc. Rev. 2015, 44, 291. (i) Che, C.-M.; Lo, V. K.; Zhou, C.-Y.;
Huang, J.-S. Chem. Soc. Rev. 2011, 40, 1950. (j) Zhang, S.-Y.;
Scheme 5 A possible mechanism
In summary, this work demonstrates a novel copper(II)-
promoted approach for the stereospecific synthesis of allyl-
ic alcohols through the denitro coupling reaction of β-nitro-
styrenes with alcohols. Various substituted β-nitrostyrenes
were shown to proceed readily via the radical addition and
nitro-elimination mechanism. In addition, compared with
the traditional method to synthesize the (E)-β-alkylsty-
renes and its derivatives, the direct C–C bond construction
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 1961–1968