Table 1 Pseudo-first order rate constants for hydrolysis of ApAsa
kobs (s21
Temp.
)
k[D
-(ApA)]
k[A
/
k[L
k[A
D
pA
/
-(ApA)]
(uC)
D-(ApA)
L-(ApA)
ADpAL
ALpAD
L
D
L
]
pA
]
80
70
60
50
40
a
(1.49 ¡ 0.01) 6 1025
(5.00 ¡ 0.02) 6 1026
(1.57 ¡ 0.00) 6 1026
(4.44 ¡ 0.04) 6 1027
(1.12 ¡ 0.01) 6 1027
(1.48 ¡ 0.02) 6 1025
(5.00 ¡ 0.01) 6 1026
(1.56 ¡ 0.01) 6 1026
(4.44 ¡ 0.01) 6 1027
(1.12 ¡ 0.01) 6 1027
(1.50 ¡ 0.01) 6 1025
(5.07 ¡ 0.01) 6 1026
(1.60 ¡ 0.02) 6 1026
(4.58 ¡ 0.09) 6 1027
(1.18 ¡ 0.02) 6 1027
(1.49 ¡ 0.01) 6 1025
(5.07 ¡ 0.04) 6 1026
(1.61 ¡ 0.01) 6 1026
(4.64 ¡ 0.06) 6 1027
(1.19 ¡ 0.01) 6 1027
1.00
0.99
0.98
0.96
0.94
0.99
0.99
0.98
0.97
0.95
Each reaction contained 40 mM dimer, 0.2 M NaCl, 75 mM MgCl2, and 0.1 M HEPES (pH 8.0). Rate constants are means ¡ standard
deviation in triplicate experiments.
the chain terminator,6 and is considered to be a serious hurdle for
the theories of the prebiotic chemical evolution of RNA. The
present results suggest that terminated (heterochiral) oligomers can
be transformed into non-terminated (homochiral) oligomers by the
preferential hydrolysis of terminated oligomers.
Table 2 Activation parameters for hydrolysis of ApAsa
Dimers
Ea (kJ mol21
)
DH{ (kJ mol21
)
DS{ (J mol21 K21
)
112.2 ¡ 0.1
112.2 ¡ 0.2
109.4 ¡ 0.1
109.4 ¡ 0.2
228.74 ¡ 0.26
228.76 ¡ 0.66
D-(ApA)
L-(ApA)
ADpAL
ALpAD
a
111.3 ¡ 0.2
110.9 ¡ 0.3
108.6 ¡ 0.2
108.2 ¡ 0.3
231.06 ¡ 0.58
232.26 ¡ 0.87
In conclusion, we found that the homochiral ApAs are
intrinsically more stable than the heterochiral ApAs under very
weak alkaline conditions. The results suggest that the hydrolytic
instability of RNA and the combined action of polymerization and
hydrolysis during the chemical evolution of RNA may have been
effective in the establishment of the homochirality of RNA.
However, it remains unknown whether RNAs containing other
bases show a similar behavior or not. Studies of the effects of the
other bases and the length of RNA oligomers on the hydrolysis are
currently under way.
Reaction conditions are the same as those in Table 1.
state, the cleavage of the P–O(59) bond of a pentacoordinated
intermediate16 of the heterochiral ApAs is easier than that of the
homochiral ones. The heterochiral ApAs have been shown to have
a more flexible stacked helical conformation than the homochiral
ApAs in solution.17 Therefore, the increase in activation entropy
(DS{) of the homochiral ApAs relative to the heterochiral ApAs
can be explained by the more rigid stacked conformation of the
homochiral ApAs at the ground state.
We thank the Sumitomo Foundation 2003 (Japan) for financial
support.
Two theories for the chemical evolution of biomolecules have
been proposed: one states that the chemical evolution of
biomolecules has proceeded in a hot environment18,19 and the
other postulates the cold origin of life.20 The hot environment,
such as hydrothermal vents, may be more suitable for accelerating
the monomer condensation,18 although it has been reported that
the nonenzymatic polymerization of activated RNA monomers
proceeds effectively even in ice eutectic phases.21 The present
results suggest that the cold environment has a better hydrolytic
selection pressure for homochiral RNA than the hot environment.
It has been predicted that heterochiral polymers are more
susceptible to hydrolytic degradation than homochiral ones, based
on the expectation that heterochiral RNA forms less stable
secondary and tertiary structures.7 Indeed, the duplex stability of
heterochiral RNA is considerably lower than that of homochiral
RNA,22 and double-stranded RNA is more resistant to hydrolysis
than single-stranded RNA.11,23 However, the present results
demonstrate that even in the case of simple single-stranded
oligomers such as ApA, heterochiral oligomers are preferentially
hydrolyzed relative to homochiral ones, and the selective
hydrolysis of heterochiral RNA does not necessarily require the
formation of higher order structures. Although the hydrolytic
selectivity is low, repeated cycles of polymerization and hydrolysis
may have resulted in the enrichment of the homochirality of RNA.
Orgel and coworkers reported the nonenzymatic template-
directed polymerization of activated mononucleotides. This
reaction was strongly inhibited when racemic nucleotides were
employed as the monomer. This phenomenon is called ‘‘enantio-
meric cross-inhibition’’, whereby unnatural L-nucleotides serve as
Hidehito Urata,* Rie Sasaki, Hiroyo Morita, Marina Kusumoto,
Yoko Ogawa, Kozue Mitsuda and Masao Akagi*
Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara,
Takatsuki, Osaka, 569-1094, Japan. E-mail: urata@gly.oups.ac.jp;
Fax: +81 (72) 690 1005; Tel: +81 (72) 690 1089
Notes and references
1 J. L. Bada, Nature, 1995, 374, 594–595.
2 A. Saghatelian, Y. Yokobayashi, K. Soltani and M. R. Ghadiri, Nature,
2001, 409, 797–801.
3 H. Zepik, E. Shavit, M. Tang, T. R. Jensen, K. Kjaer, G. Bolbach,
L. Leiserowitz, I. Weissbuch and M. Lahav, Science, 2002, 295,
1266–1269.
4 T. Hitz and P. L. Luisi, Helv. Chim. Acta, 2003, 86, 1423–1434.
5 M. Bolli, R. Micura and A. Eschenmoser, Chem. Biol., 1997, 4,
309–320.
6 G. F. Joyce, G. M. Visser, C. A. A. van Boeckel, J. H. van Boom,
L. E. Orgel and J. van Westrenen, Nature, 1984, 310, 602–604.
7 P. C. Joshi, S. Pitsch and J. P. Ferris, Chem. Commun., 2000, 2497–
2498.
8 H. Urata, C. Aono, N. Ohmoto, Y. Shimamoto, Y. Kobayashi and
M. Akagi, Chem. Lett., 2001, 324–325.
9 G. von Kiedrowski, Nature, 1996, 381, 20–21.
10 G. Wa¨chtersha¨user, Microbiol. Rev., 1988, 452–484.
11 K. Kawamura and M. Umehara, Bull. Chem. Soc. Jpn., 2001, 74,
927–935.
12 Y. Yamagata, H. Sakihama and K. Nakano, Origins Life, 1980, 10,
349–355.
13 N. E. Blair and W. A. Bonner, Origins Life, 1981, 11, 331–335.
14 D. M. Brown, D. I. Magrath, A. H. Neilson and A. R. Todd, Nature,
1956, 177, 1124–1125.
15 S. Mikkola, S. N. Mikhailov, E. Efimtseva, K. Neuvonen, M. Oivanen,
L. Beigelman and H. Loennberg, Origins Life Evol. Biosphere, 2002, 32,
303–310.
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 2578–2580 | 2579