4872
J . Org. Chem. 1996, 61, 4872-4873
Ster eoselective Hyd r ogen a tion of Sim p le
Keton es Ca ta lyzed by Ru th en iu m (II)
Com p lexes
Takeshi Ohkuma, Hirohito Ooka,
Masashi Yamakawa,† Takao Ikariya, and
Ryoji Noyori*,‡
ERATO Molecular Catalysis Project, Research Development
Corporation of J apan, 1247 Yachigusa, Yakusa-cho,
Toyota 470-03, J apan
Received May 29, 1996
Diastereoselective reduction of ketones to secondary
alcohols is a major subject of organic synthesis.1 This
important transformation has mainly been accomplished
by stoichiometric metal hydride reagents.2 Although a
wide range of stereoselective reducing agents are avail-
able, each reagent has a limited scope due to the inherent
chemical property as well as the difficulty in structural
modification. Development of stereoselective hydrogena-
tion catalyzed by transition metal-based molecular com-
plexes is ardently desired because of the higher structural
permutability of the catalyst, in addition to a series of
practical benefits.3,4 Here, we present some examples of
highly diastereoselective hydrogenation of ketones cata-
lyzed by a Ru(II)-phosphine-1,2-diamine combined
system,5,6 which can easily be perturbed by electronic and
steric effects (bulkiness and chirality). The synthetic
utility is further enhanced by the application of dynamic
kinetic discrimination7 of configurationally labile dia-
stereomeric, epimeric, and enantiomeric ketones.
facile hydrogenation of various ketones in 2-propanol
with a high substrate/catalyst molar ratio (S/C) in 1-8
atm of H2 at room temperature to give the corresponding
alcohols in a near quantitative yield. We first tested
steric requirements of the standard P(C6H5)3-NH2(CH2)2-
NH2 combined system. Hydrogenation of 4-tert-butylcy-
clohexanone (1a ), a conformationally anchored substrate,
with S/C ) 500, or even 10 000 on a 30-g scale, occurred
preferentially from the less crowded equatorial direction
to give a 98.4:1.6 mixture of cis-4-tert-butylcyclohexanol
(cis-2a ) and its trans isomer (eq 1).8 As expected, the
stereoselectivity of the hydrogenation of other 4-substi-
tuted cyclohexanones is controlled basically by the popu-
lation of the equatorial and axial conformers,9 leading
to a predominance of the cis alcohols (Table 1). Hydro-
genation of 3-methylcyclohexanone (3c) afforded quan-
titatively trans-4c and the cis isomer with a 96:4 dias-
tereoselectivity (eq 2). In a similar manner, 2-alkyl-
cyclohexanones (5) were hydrogenated to afford predomi-
nantly cis-6 over the trans isomers (eq 3). The diaste-
reoselectivity, observed with 5, is higher than the equi-
librium ratio of the equatorial and axial conformers.
Perhaps this is due to the repulsive interaction between
the axial R-substituent and incoming Ru hydride species
which prevents trans alcohol formation. 2-Methylcyclo-
pentanone gave the cis alcohol with a diastereoselection
as high as 99:1 (100%). Bicyclo[2.2.1]heptan-2-one pro-
duced a 99:1 mixture of the endo and exo alcohols.
Reaction of the 1-phenylethyl ketones 7a and 7b,
conformationally flexible standards, showed a high Cram
selectivity10,11 to give syn-8a ,b and anti-8a ,b in a 98:2
and 93:7 ratio, respectively, in >96% isolated yield (eq
4). Overall, the degrees of the kinetic diastereoface
discrimination observed with the standard Ru catalyst
system are well compared with those accomplished by
stoichiometric reduction using Selectride reagents.2
This catalyst system is characterized by the high
tunability of the stereochemical and electronic properties
A Ru(II) catalyst in situ formed from RuCl2(phosphine)n,
a 1,2-diamine, and KOH in a 1:1:2 molar ratio5,6 effects
† Permanent address: Kinjo Gakuin University, Omori, Moriyama,
Nagoya 463, J apan.
‡ Permanent address: Department of Chemistry, Nagoya Univer-
sity, Chikusa, Nagoya 464-01, J apan.
(1) Selected reviews: (a) Brown, H. C.; Krishnamurthy, S. Tetra-
hedron 1979, 35, 567-607. (b) El-Khawaga, A. M.; Hoffmann, H. M.
R. In Methods of Organic Chemistry (Houben-Weyl), 4th ed.; Helmchen,
G., Hoffmann, R. W., Mulzer, J ., Schaumann, E., Eds.; Georg Thieme
Verlag: Stuttgart, 1995; Vol. E21d, pp 3967-3987. (c) Davis, A. P. In
Methods of Organic Chemistry (Houben-Weyl), 4th ed.; Helmchen, G.,
Hoffmann, R. W., Mulzer, J ., Schaumann, E., Eds.; Georg Thieme
Verlag: Stuttgart, 1995; Vol. E21d, pp 3988-4048. (d) Krohn, K. In
Methods of Organic Chemistry (Houben-Weyl), 4th ed.; Helmchen, G.,
Hoffmann, R. W., Mulzer, J ., Schaumann, E., Eds.; Georg Thieme
Verlag: Stuttgart, 1995; Vol. E21d, pp 4099-4142. See also: (e) Fisher,
G. B.; Fuller, J . C.; Harrison, J .; Alvarez, S. G.; Burkhardt, E. R.;
Goralski, C. T.; Singaram, B. J . Org. Chem. 1994, 59, 6378-6385. (f)
Barden, M. C.; Schwartz, J . J . Org. Chem. 1995, 60, 5963-5965.
(2) Selectride reagents: (a) Brown, H. C.; Krishnamurthy, S. J . Am.
Chem. Soc. 1972, 94, 7159-7161. (b) Krishnamurthy, S.; Brown, H.
C. J . Am. Chem. Soc. 1976, 98, 3383-3384.
(3) Reviews on stereoselective hydrogenation: (a) Rylander, P.
Catalytic Hydrogenation in Organic Syntheses; Academic Press: New
York, 1979; Chapter 6. (b) Harada, K.; Munegumi, T. In Comprehensive
Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press:
Oxford, 1991; Vol. 8, pp 139-158.
(4) Examples of other catalytic stereoselective methods. Transfer
hydrogenation: (a) Henbest, H. B.; Mitchell, T. R. B. J . Chem. Soc. C
1970, 785-791. (b) Konishi, K.; Aida, T.; Inoue, S. J . Org. Chem. 1990,
55, 816-820. Hydrosilylation: (c) Ojima, I.; Nihonyanagi, M.; Nagai,
Y. Bull. Chem. Soc. J pn. 1972, 45, 3722. (d) Semmelhack, M. F.; Misra,
R. N. J . Org. Chem. 1982, 47, 2469-2471. (e) Fujita, M.; Hiyama, T.
J . Org. Chem. 1988, 53, 5405-5415. Hydrostannation: (f) Quintard,
J .-P.; Pereyre, M. Bull. Soc. Chim. Fr. 1972, 1950-1955.
(5) Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J .
Am. Chem. Soc. 1995, 117, 2675-2676.
(8) (a) Eliel, E. L.; Senda, Y. Tetrahedron 1970, 26, 2411-2428. (b)
Boone, J . R.; Ashby, E. C. Top. Stereochem. 1979, 11, 53-95. (c)
Wigfield, D. C. Tetrahedron 1979, 35, 449-462. (d) Franck, R. W. In
Conformational Behavior of Six-Membered Rings; J uaristi, E., Ed.;
VCH: New York, 1995; Chapter 5.
(9) (a) Krohn, K. In Methoden der Organischen Chemie (Houben-
Weyl), 4th ed.; Bracht, J ., Friedrichsen, W., Krohn, K., Kropf, H.,
Maher-Detweiler, M., Margaretha, P., Messinger, P., Ohloff, G.,
Schaumann, E., Eds.; Georg Thieme Verlag: Stuttgart, 1984; Vol. 6/1b,
pp 289-431. (b) Eliel, E. L.; Wilen, S. H.; Mander, L. N. Stereochemistry
of Organic Compounds; Wiley: New York, 1994; pp 731-737.
(10) Reviews: (a) Eliel, E. L. In Asymmetric Synthesis; Morrison,
J . D., Ed.; Academic Press: New York, 1983; Vol. 2, Part A, Chapter
5. (b) J uaristi, E. Introduction to Stereochemistry and Conformational
Analysis; Wiley: New York, 1991; Chapter 11.
(6) Ohkuma, T.; Ooka, H.; Ikariya, T.; Noyori, R. J . Am. Chem. Soc.
1995, 117, 10417-10418.
(7) (a) Kitamura, M.; Tokunaga, M.; Noyori, R. J . Am. Chem. Soc.
1993, 115, 144-152. (b) Kitamura, M.; Tokunaga, M.; Noyori, R. J .
Am. Chem. Soc. 1995, 117, 2931-2932. (c) Noyori, R.; Tokunaga, M.;
Kitamura, M. Bull. Chem. Soc. J pn. 1995, 68, 36-55.
S0022-3263(96)00997-8 CCC: $12.00 © 1996 American Chemical Society