B. C. Ranu et al. / Tetrahedron Letters 48 (2007) 3847–3850
3849
used. It should be mentioned that no existing procedures
References and notes
have addressed the compatibility of carbonyl groups
present in the molecule.3
1. Baylis, A. B.; Hillman, M. E. D. German Patent
2,155,113, 1972; Chem. Abstr. 1972, 77, 34174q.
2. (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem.
Rev. 2003, 103, 811–891, and references cited therein; (b)
Drewes, S. E.; Roos, G. H. P. Tetrahedron 1998, 44, 4653–
4670.
A number of triaryl- and trivinylindiums were subjected
to additions with several acetates of Baylis–Hillman ad-
ducts under the catalysis of Pd(PPh3)4 using this proce-
dure to provide the corresponding products. The results
are reported in Table 3. In accordance with the results
obtained by other groups,3 the acetates of Baylis–Hill-
man carboalkoxy adducts produced mainly (E)-alkenes
(entries 1–4, Table 3) whereas Baylis–Hillman nitrile
adducts led to (Z)-isomers (entries 5–7, Table 3)
exclusively, or stereoselectively. The stereochemistry of
the products was established by comparing NMR
parameters for the olefinic and methylene protons with
literature values.3 It was observed that small amounts
(2–5%) of the corresponding homocoupled prod-
ucts from triarylindiums were also formed in these
reactions.
3. (a) Basavaiah, D.; Sarma, P. K. S.; Bhavani, A. K. D.
Chem. Commun. 1994, 1091–1092; (b) Kabalka, G. W.;
Venkataiah, B.; Dong, G. Org. Lett. 2003, 5, 3803–3805;
(c) Navarre, L.; Darses, S.; Genet, J.-P. Adv. Synth. Catal.
2006, 348, 317–322; (d) Kabalka, G. W.; Dong, G.;
Venkataiah, B.; Chen, C. J. Org. Chem. 2005, 70, 9207–
9210; (e) Das, B.; Banerjee, J.; Mahender, G.; Majhi, A.
Org. Lett. 2004, 6, 3349–3352; (f) Basavaiah, D.; Krish-
namacharyulu, H. R. S.; Pandiaraju, S. Tetrahedron Lett.
1997, 38, 2141–2144.
4. (a) Cintas, P. Synlett 1995, 1087–1096; (b) Li, C.-J.
Tetrahedron 1996, 52, 5643–5668; (c) Li, C.-J.; Chan, T. H.
Tetrahedron 1999, 55, 11149–11176; (d) Chauhan, K. K.;
Frost, C. G. J. Chem. Soc., Perkin Trans. 1 2000, 3015–
3019; (e) Ranu, B. C. Eur. J. Org. Chem. 2000, 2347–2356;
(f) Ghosh, R. Indian J. Chem. 2001, 40B, 550–557; (g)
Podelech, J.; Maier, T. C. Synthesis 2003, 633–655; (h)
Nair, V.; Ros, S.; Jayan, C. N.; Pillai, B. S. Tetrahedron
2004, 68, 1959–1982.
5. (a) Metza, J. T., Jr.; Terzian, A.; Minehan, T. Tetrahedron
Lett. 2006, 47, 8905–8910; (b) Rodriguez, D.; Sestelo, J.
P.; Sarandeses, L. A. J. Org. Chem. 2003, 68, 2518–2520;
(c) Reveiros, R.; Rodriguez, D.; Sestelo, J. P.; Sarandeses,
L. A. Org. Lett. 2006, 8, 1403–1406; (d) Perez, I.; Sestelo,
J. P.; Sarandeses, L. A. J. Am. Chem. Soc. 2001, 123,
4155–4160; (e) Baker, L.; Minehan, T. J. Org. Chem. 2004,
69, 3957–3960; (f) Pena, M. A.; Perez, I.; Sestelo, J. P.;
Sarandeses, L. A. Chem. Commun. 2002, 2246–2247; (g)
Lee, P. H.; Lee, S. W.; Lee, K. Org. Lett. 2003, 5, 1103–
1106; (h) Fausett, B. W.; Liebeskind, L. S. J. Org. Chem.
2005, 70, 4851–4853; (i) Perez, I.; Sestelo, J. P.; Maestro,
M. A.; Mourino, A.; Sarandeses, L. A. J. Org. Chem.
1998, 63, 10074–10076.
6. (a) Ranu, B. C.; Hajra, A.; Jana, U. J. Org. Chem. 2000,
65, 6270–6272; (b) Ranu, B. C.; Hajra, A.; Jana, U.
Tetrahedron Lett. 2000, 41, 531–533; (c) Ranu, B. C.;
Samanta, S.; Hajra, A. Synlett 2002, 987–989; (d) Ranu, B.
C.; Das, A.; Samanta, S. Synlett 2002, 727–730; (e) Ranu,
B. C.; Dey, S. S.; Hajra, A. Tetrahedron 2002, 58, 2529–
2532; (f) Ranu, B. C.; Hajra, A.; Dey, S. S.; Jana, U.
Tetrahedron 2003, 59, 813–819; (g) Ranu, B. C.; Samanta,
S. J. Org. Chem. 2003, 68, 7130–7132; (h) Ranu, B. C.;
Das, A.; Hajra, A. Synthesis 2003, 1012–1014; (i) Ranu, B.
C.; Samanta, S. Tetrahedron 2003, 59, 7901–7906; (j)
Ranu, B. C.; Mandal, T.; Samanta, S. Org. Lett. 2003, 5,
1439–1441; (k) Ranu, B. C.; Mandal, T. J. Org. Chem.
2004, 69, 5793–5795; (l) Ranu, B. C.; Mandal, T. Synlett
2004, 1239–1242; (m) Ranu, B. C.; Das, A. Tetrahedron
Lett. 2004, 45, 6875–6877; (n) Ranu, B. C.; Jana, R.;
Samanta, S. Adv. Synth. Catal. 2004, 346, 446–450; (o)
Ranu, B. C.; Das, A. Adv. Synth. Catal. 2005, 347, 712–
714; (p) Ranu, B. C.; Chattopadhyay, K.; Banerjee, S. J.
Org. Chem. 2006, 71, 423–425; (q) Ranu, B. C.; Mandal,
T. Tetrahedron Lett. 2006, 47, 2859–2861; (r) Ranu, B. C.;
Mandal, T. Tetrahedron Lett. 2006, 47, 5677–5680; (s)
Ranu, B. C.; Mandal, T. Tetrahedron Lett. 2006, 47, 6911–
6914.
In general, the reactions were high yielding. THF was
found to be the most suitable solvent and the reactions
were carried out under reflux. As is evident from the re-
sults, aryl transfer from the triarylindiums proceeded
smoothly under Pd-catalysis, whereas alkyl transfer oc-
curred via CuI catalysis. Although Pd-catalysis is well
documented,3,5 Cu-catalysis in alkyl additions to Bay-
lis–Hillman acetates is less explored. It may be assumed
that the trialkylindium undergoes transmetallation with
CuI and subsequently the organocuprate forms a p-
complex with the Baylis–Hillman acetate adduct in
which the cuprate fragment is bound anti to the acetate
moiety. Reductive elimination of alkylcopper through a
r-copper(III) species with retention of configuration
gives rise to the SN20 product.10 It is worth mentioning
that Cu(OTf)2-catalyzed coupling of triorganylindiums
to cinnamyl bromide provided both SN2 and SN20 prod-
ucts and that Cu(OTf)2 did not initiate addition to cinn-
amyl acetate. Significantly, this CuI-catalyzed reaction
led only to SN20 products.
In conclusion, we have developed a general and efficient
method for the addition of triorganoindiums to Baylis–
Hillman acetate adducts to provide (E)- and (Z)-trisub-
stituted alkenes stereoselectively. Substrates bearing car-
boalkoxy moieties produced (E)-alkenes, whereas those
having a nitrile group gave (Z)-alkenes. This protocol
is applicable to both alkyl and aryl transfer under CuI
and Pd(PPh3)4 catalysis, respectively. The use of trior-
ganoindiums in this addition reaction made this proce-
dure chemoselective being inert to carbonyl groups,
which is not likely to be achieved with Grignard
reagents.
Acknowledgements
We are pleased to acknowledge financial support from
the CSIR [Grant No. 01(1936)/04/EMR-1], New Delhi,
for this project. K.C. and R.J. also thank the CSIR for
their fellowships.
7. Representative procedure for the addition of tributylindium
to 2-[acetoxy-(4-acetylphenyl)-methyl]-acrylic acid methyl
ester (Table 2, entry 6). A solution of 2-[acetoxy-(4-
acetylphenyl)-methyl]-acrylic acid methyl ester (276 mg,