552
B. DAS ET AL.
ACKNOWLEDGMENT
The authors thank the Council for Scientific and Industrial Research and the
University Grants Commission, New Delhi, for financial assistance.
REFERENCES
1. Finar, I. L. Organic chemistry; In Stereochemistry and Chemistry of Natural Products, 5th
ed.; Longman Group Ltd.: London, 1975; vol. 2, pp. 885–913.
2. Rango, R.; Marshall, R. G.; Di Santo, R.; Massa, S. Costi.; Artico, M. R. Antimycobac-
terial pyrroles: Synthesis, antimycobacterium tuberculosis activity, and QSAR studies.
Bioorg. Med. Chem. 2000, 8, 1423; (b) Yang, Q.; Lin, J.; Mak, C. T.; Wang, C. N. H. Highly
regioselectve synthesis of 2,3,4-trisubstituted 1H-pyrroles: A formal total synthesis of
lukianol A. J. Org. Chem. 2000, 65, 3587; (c) Amos, J. I. R.; Gourlay, S. B.; Molesworth,
P. P.; Smith, A. J.; Sprod, R. O. Annulation of pyrrole: Application to the synthesis of
indolizidine alkaloids. Tetrahedron 2005, 61, 8226.
3. (a) Furstner, A.; Szillat, H.; Gabor, B.; Mynott, R. Platinum- and acid-catalysed enyne
metathesis reactions: Mechanic studies and applications to the syntheses of streptorubin
B and metacycloprodigiosin. J. Am. Chem. Soc. 1998, 120, 8305; (b) Jacobi, A. P.; Coults,
S. J.; Leung, I. S.; Guo. New strategies for the synthesis of biologically important tetra-
pyrroles: The ‘‘B, CþDþA’’ approach to linear tetrapyrroles. J. Org. Chem. 2000, 65, 205.
4. (a) Pridmore, J. S.; Slatford, P. A.; Aurelie, D.; Whittlesey, K. M.; Williams, S. M. J.
Ruthenium-catalysed conversion of 1,4-alkynediols into pyrroles. Tetrahedron Lett. 2007,
48, 5115; (b) Misra, C. N.; Panda, K.; Ila, H.; Junjappa, H. An efficient highly regioselective
synthesis of 2,3,4-trisubsubtituted pyrroles by cycloaddition of polarized ketene S,S- and
N,S-acetals with activated methylene isocyanides. J. Org. Chem. 2007, 72, 1246.
5. Domingo, C. M. V.; Aleman, C. M.; Brillas, E.; Julia, L. Diradical dications of m- and
p-phenylenebis [2,5-di(2-thienyl)-1-pyrrole]: Weakly coupled diradicals. J. Org. Chem.
2001, 66, 4058.
6. (a) Trost, M. B.; Doherty, A. G. An asymmetric synthesis of the tricyclic core and a
formal total synthesis of roseophilin via an enyne metathesis. J. Am. Chem. Soc. 2000,
122, 3801; (b) Bartolo, G.; Saberno, G.; Fazio, A. General and regioselective synthesis
of substituted pyrroles by metal-catalyzed or spontaneous cycloisomerization of (Z)-(2-
en-4-ynyl) amines. J. Org. Chem. 2003, 68, 7853; (c) Tracey, R. M.; Hsung, P. R.;
Lambeth, H. R. Allylated b-ketoesters as precursors in Paal–Knorr-type pyrrole synthesis:
Preparation of chiral and bispyrroles. Synthesis 2004, 918.
7. (a) Das, B.; Satyalakshmi, G.; Suneel, K.; Shashikanth, B. A distinct approach for the
rapid synthesis of homoallylic amines starting from nitro compounds in water. Tetra-
hedron Lett. 2008, 49, 7209; (b) Das, B.; Satyalakshmi, G.; Suneel, K. A convenient and
rapid synthesis of a-aminonitriles starting directly from nitro compounds in water. Tetra-
hedron Lett. 2009, 50, 2770; (c) Das, B.; Satyalakshmi, G.; Suneel, K.; Damodar, K.
Organic reactions in water: A distinct novel approach for an efficient synthesis of a-amino
phosphonates starting directly from nitro compounds. J. Org. Chem. 2009, 74, 8400.
8. Lee, G. J.; Choi, I. K.; Koh, Y. H.; Kong, Y.; Kim, Y.; Cho, S. Y. Indium-mediated
reduction of nitro and azide groups in the presence of HCl in aqueous media. Synthesis
2001, 81.
9. Kashima, C.; Hibi, S.; Maruyama, T.; Harada, K.; Omote, Y. A convenient and one-pot
synthesis of 9-substituted carbazoles from primary amine hydrochlorides and 2,5-
dimethoxytetrahydrofuran. J. Heterocycl. Chem. 1987, 24, 913.
10. (a) Lee, K. C.; Jun, H. J.; Yu, S. J. Synthesis and nuclear magnetic resonance spectroscopic
studies of 1-arylpyrroles. J. Heterocycl. Chem. 2000, 37, 15; (b) Bandyopadhyay, D.;