vi
A. A. Safari, F. Kazemi/Chemical Papers
atomic absorption spectroscopy showed the presence
Convenient preparation of CdS nanostructures as a highly ef-
ficient photocatalyst under blue LED and solar light irradia-
tion. Separation and Purification Technology, 120, 180–185.
DOI: 10.1016/j.seppur.2013.09.039.
Eskandari, P., Kazemi, F., & Zand, Z. (2014). Photocatalytic
reduction of aromatic nitro compounds using CdS nanos-
tructure under blue LED irradiation. Journal of Photo-
chemistry and Photobiology A: Chemistry, 274, 7–12. DOI:
10.1016/j.jphotochem.2013.09.011.
Flores, S. O., Rios-Bernij, O., Valenzuela, M. A., Córdova, I.,
Gómez, R., & Gutiérrez, R. (2007). Photocatalytic reduction
of nitrobenzene over titanium dioxide: by-product identifica-
tion and possible pathways. Topics in Catalysis, 44, 507–511.
DOI: 10.1007/s11244-006-0098-2.
2+
of low amounts of Cd in the centrifuged solution af-
ter each reaction run under sunlight irradiation that
2+
can be attributed to the release of Cd via photo-
+
2+
corossion reaction (CdS + h → Cd + S) causing
a decrease of the reaction yield. On the other hand,
diffuse reflectance spectroscopy results with CdS-NP
revealed that the photocatalyst band gap energies re-
mained unaffected after four runs under sunlight and
LED irradiation.
Conclusions
F u¨ ldner, S., Mild, R., Siegmund, H. I., Schroeder, J. A., Gruber,
M., & K ¨o nig, B. (2010). Green-light photocatalytic reduction
using dye-sensitized TiO2 and transition metal nanoparticles.
Green Chemistry, 12, 400–406. DOI: 10.1039/b918140g.
F u¨ ldner, S., Mitkina, T., Trottmann, T., Frimberger, A., Gru-
ber, M., & K ¨o nig, B. (2011). Urea derivatives enhance
the photocatalytic activity of dye-modified titanium diox-
ide. Photochemical & Photobiological Sciences, 10, 623–625.
DOI: 10.1039/c0pp00374c.
In conclusion, we have demonstrated that simply
prepared nanosized CdS is an efficient heterogeneous
photocatalyst for the photocatalytic reduction of a va-
riety of nitro aromatics containing electron withdraw-
ing and donating groups to the corresponding amines
under sunlight and blue LEDs irradiation. Photocat-
alytic reduction of amines in sunlight was faster than
that under LEDs irradiation, but the reusability of the
catalyst under LED irradiation was found to be better
than sunlight.
Hakki, A., Dillert, R., & Bahnemann, D. (2009). Photo-
catalytic conversion of nitroaromatic compounds in the
presence of TiO2. Catalysis Today, 144, 154–159. DOI:
10.1016/j.cattod.2009.01.029.
Photocatalytic reaction under sunlight and LED
irradiation showed that CdS-NP is a highly efficient
catalyst for the reduction of nitrobenzenes to the cor-
responding anilines compared with CdS-Ald. High sur-
face area, wide band gap and positive values of the
CdS-NP valence band potential enhanced the photo-
catalytic ability of CdS-NP vs. CdS-Ald.
Herrmann, J. M. (2005). Heterogeneous photocatalysis: state
of the art and present applications. Topics in Catalysis, 34,
49–65. DOI: 10.1007/s11244-005-3788-2.
Hopfner, M., Weiß, H., Meissner, D., Heinemann, F. W., &
Kisch, H. (2002). Semiconductor photocatalysis type B: syn-
thesis of unsaturated α-amino esters from imines and olefins
photocatalyzed by silica-supported cadmium sulfide. Pho-
tochemical & Photobiological Sciences, 1, 696–703. DOI:
10.1039/b204569a.
References
Imamura, K., Iwasaki, S. I., Maeda, T., Hashimoto, K., Ohtani,
B., & Kominami, H. (2011). Photocatalytic reduction of ni-
trobenzenes to aminobenzenes in aqueous suspensions of ti-
tanium(IV) oxide in the presence of hole scavengers under
deaerated and aerated conditions. Physical Chemistry Chem-
ical Physics, 13, 5114–5119. DOI: 10.1039/c0cp02279a.
In, S. I., Vesborg, P. C. K., Abrams, B. L., Hou, Y. D.,
& Chorkendorff, I. (2011). A comparative study of two
techniques for determining photocatalytic activity of ni-
trogen doped TiO2 nanotubes under visible light irradi-
ation: Photocatalytic reduction of dye and photocatalytic
oxidation of organic molecules. Journal of Photochem-
istry and Photobiology A: Chemistry, 222, 258–262. DOI:
10.1016/j.jphotochem.2011.06.005.
Abedi, S., Karimi, B., Kazemi, F., Bostina, M., & Vali, H.
(
2013). Amorphous TiO2 coated into periodic mesoporous
organosilicate channels as a new binary photocatalyst for re-
generation of carbonyl compounds from oximes under sun-
light irradiation. Organic & Biomolecular Chemistry, 11,
16–419. DOI: 10.1039/c2ob26907d.
Ananthakrishnan, R., & Gazi, S. (2012). [Ru(bpy)3]
photocatalytic synthesis of 2-arylpyridines via Hantzsch reac-
tion under visible irradiation and oxygen atmosphere. Catal-
ysis Science & Technology, 2, 1463–1471. DOI: 10.1039/
c2cy20050c.
Bao, N. Z., Shen, L. M., Takata, T., & Domen, K. (2008).
Self-templated synthesis of nanoporous CdS nanostructures
for highly efficient photocatalytic hydrogen production un-
der visible light. Chemistry of Materials, 20, 110–117. DOI:
4
2+
aided
Kakroudi, M. A., Kazemi, F., & Kaboudin, B. (2014). β-
Cyclodextrin-TiO2: Green nest for reduction of nitroaro-
matic compounds. RSC Advances, 4, 52762–52769. DOI:
10.1039/c4ra08059a.
1
0.1021/cm7029344.
Bhar, S., & Ananthakrishnan, R. (2015). Utilization of Ru(II)-
complex immobilized ZnO hybrid in presence of Pt(II) co-
catalyst for photocatalytic reduction of 4-nitrophenol un-
der visible light. RSC Advances, 5, 20704–20711. DOI:
Kaur, J., & Pal, B. (2014). 100% selective yield of m-nitroaniline
by rutile TiO2 and m-phenylenediamine by P25-TiO2 dur-
ing m-dinitrobenzene photoreduction. Catalysis Communi-
cations, 53, 25–28. DOI: 10.1016/j.catcom.2014.04.019.
Kumar, J. S. D., Ho, M. K. M., & Toyokuni, T. (2001). Simple
and chemoselective reduction of aromatic nitro compounds
to aromatic amines: reduction with hydriodic acid revisited.
Tetrahedron Letters, 42, 5601–5603. DOI: 10.1016/s0040-
4039(01)01083-8.
Li, Q., Guo, B. D., Yu, J. G., Ran, J. R., Zhang, B. H., Yan,
H. J., & Gong, J. R. (2011). Highly efficient visible-light-
driven photocatalytic hydrogen production of CdS-cluster-
decorated graphene nanosheets. Journal of the American
10.1039/c4ra13746a.
Britt, J., & Ferekides, C. (1993). Thin-film CdS/CdTe solar
cell with 15.8% efficiency. Applied Physics Letters, 62, 2851–
2852. DOI: 10.1063/1.109629.
Chun, S., Jung, Y., Kim, J., & Kim, D. (2011). The analysis of
CdS thin film at the processes of manufacturing CdS/CdTe
solar cells. Journal of Crystal Growth, 326, 152–156. DOI:
10.1016/j.jcrysgro.2011.01.086.
Eskandari, P., Kazemi, F., & Azizian-Kalandaragh, Y. (2013).
Brought to you by | New York University Bobst Library Technical Services
Authenticated
Download Date | 2/6/16 1:13 PM