10.1002/chem.202000219
Chemistry - A European Journal
COMMUNICATION
Keywords: protein therapy • logic gate • molecular glue•
biomineralization • drug delivery
[1]
Z. Gu, A. Biswas, M. Zhao, Y. Tang, Chem. Soc. Rev. 2011, 40, 3638-
3655.
[2] a) Y. Liu, J. Du, M. Yan, M. Y. Lau, J. Hu, H. Han, O. O. Yang, S. Liang,
W. Wei, H. Wang, J. Li, X. Zhu, L. Shi, W. Chen, C. Ji, Y. Lu, Nat.
Nanotechnol. 2013, 8, 187-192; b) M. Wang, S. Sun, C. I. Neufeld, B.
Perez-Ramirez, Q. Xu, Angew. Chem. Int. Ed. 2014, 53, 13444-13448.
[3]
a) X. Wu, C. He, Y. Wu, X. Chen, J. Cheng, Adv. Funct. Mater. 2015,
25, 6744-6755; b) J. Chen, Y. Zou, C. Deng, F. Meng, J. Zhang, Z.
Zhong, Chem. Mater. 2016, 28, 8792-8799.
[4]
M. Wang, K. Alberti, S. Sun, C. L. Arellano, Q. Xu, Angew. Chem. Int.
Ed. 2014, 53, 2893-2898.
[5]
[6]
[7]
X. Liu, C. Wang, Z. Liu, Adv Healthc Mater 2018, 7, e1800913.
J. Du, L. A. Lane, S. Nie, J. Controlled Release 2015, 219, 205-214.
a) Y. Qian, X. Wang, Y. Liu, Y. Li, R. A. Colvin, L. Tong, S. Wu, X.
Chen, Cancer Lett. 2014, 351, 242-251; b) J. Tian, X. Zeng, X. Xie, S.
Han, O. W. Liew, Y. T. Chen, L. Wang, X. Liu, J. Am. Chem. Soc. 2015,
137, 6550-6558.
[8]
[9]
a) K. Wilhelm, J. Ganesan, T. Müller, C. Dürr, M. Grimm, A. Beilhack, C.
D. Krempl, S. Sorichter, U. V. Gerlach, E. Jüttner, A. Zerweck, F.
Gärtner, P. Pellegatti, F. Di Virgilio, D. Ferrari, N. Kambham, P. Fisch, J.
Finke, M. Idzko, R. Zeiser, Nat. Med. 2010, 16, 1434-1438; b) M. W.
Gorman, E. O. Feigl, C. W. Buffington, Clin. Chem. 2007, 53, 318-325.
a) R. Mo, T. Jiang, R. DiSanto, W. Tai, Z. Gu, Nat. Commun. 2014, 5,
3364; b) C. L. Zhu, C. H. Lu, X. Y. Song, H. H. Yang, X. R. Wang, J.
Am. Chem. Soc. 2011, 133, 1278-1281.
Figure 5. Cell viability of HeLa cells treated with TRP/Glue@CaP at pH
6.5 or 7.4 in the absence and presence of ATP.
proved that long-term exposure of trypsin makes cells weak and
even to cell death through down-regulating superficial integrins
to regulate the apoptotic ability of cells.[20] TRP/Glue@CaP
showed no toxicity to HeLa cells at pH 7.4 in the absence of
ATP even at the concentration of 1 mg/mL after 24 h treatment,
which indicated that TRP/Glue@CaP has no function in normal
tissues. The cancer cells decreased to 50% in viability only at
pH 6.5 in the presence of ATP (100 μM), while either pH 7.4 or
low concentration of ATP (0.1 μM) could keep the cell viability
over 80%. These results suggest that the highly selective toxicity
of TRP/Glue@CaP against cancer cells is attributed to the acidic
pH and high concentration of ATP in tumor tissue, which can
activate the therapeutic effect of protein than in normal tissues.
In conclusion, we have constructed a modular AND gate-
controlled delivery platform for tumor microenvironment specific
activation of protein activity based on molecular glue and
biomineralization. The AND gate integrates the specific
microenvironment of tumor tissues (acidic pH and a certain
concentration of ATP) as inputs and activates the therapeutic
activity of protein only when both inputs are active. Trypsin was
applied as a proof of concept to prepare the TRP/Glue@CaP
nanoparticles to show high specific toxicity for cancer cells in the
tumor microenvironment. Besides, this modular AND gate is
based on the multiple salt bridges between guanidinium and
oxyanionic groups, which can be suitable for many therapeutic
proteins and nucleic acids.[21] We hope this AND gate can be
extended to a broad range of applications such as sensing,
imaging, delivery as well as therapy.
[10] K. Okuro, M. Sasaki, T. Aida, J. Am. Chem. Soc. 2016, 138, 5527-5530.
[11] J. Lai, B. P. Shah, Y. Zhang, L. Yang, K.-B. Lee, ACS Nano 2015, 9,
5234-5245.
[12] M. You, G. Zhu, T. Chen, M. J. Donovan, W. Tan, J. Am. Chem. Soc.
2015, 137, 667-674.
[13] M. N. Stojanovic, S. Semova, D. Kolpashchikov, J. Macdonald, C.
Morgan, D. Stefanovic, J. Am. Chem. Soc. 2005, 127, 6914-6915.
[14] G. Strack, M. Ornatska, M. Pita, E. Katz, J. Am. Chem. Soc. 2008, 130,
4234-4235.
[15] Y. Liu, Y. Zeng, L. Liu, C. Zhuang, X. Fu, W. Huang, Z. Cai, Nat.
Commun. 2014, 5, 5393.
[16] Y. Lin, C. Xu, J. Ren, X. Qu, Angew. Chem. Int. Ed. 2012, 51, 12579-
12583.
[17] a) T. Tian, Y. Song, J. Wang, B. Fu, Z. He, X. Xu, A. Li, X. Zhou, S.
Wang, X. Zhou, J. Am. Chem. Soc. 2016, 138, 955-961; b) J. Wang, Y.
Wei, X. Hu, Y. Y. Fang, X. Li, J. Liu, S. Wang, Q. Yuan, J. Am. Chem.
Soc. 2015, 137, 10576-10584; c) S. Kohse, A. Neubauer, A. Pazidis, S.
Lochbrunner, U. Kragl, J. Am. Chem. Soc. 2013, 135, 9407-9411.
[18] a) X. Wang, C. Sun, P. Li, T. Wu, H. Zhou, D. Yang, Y. Liu, X. Ma, Z.
Song, Q. Nian, L. Feng, C. Qin, L. Chen, R. Tang, Adv. Mater. 2016, 28,
694-700; b) G. Wang, X. Li, L. Mo, Z. Song, W. Chen, Y. Deng, H. Zhao,
E. Qin, C. Qin, R. Tang, Angew. Chem. Int. Ed. 2012, 51, 10576-10579;
c) G. Wang, R. Y. Cao, R. Chen, L. Mo, J. F. Han, X. Wang, X. Xu, T.
Jiang, Y. Q. Deng, K. Lyu, S. Y. Zhu, E. D. Qin, R. Tang, C. F. Qin,
Proc. Natl. Acad. Sci. USA 2013, 110, 7619-7624.
[19] F. Pu, J. Ren, X. Yang, X. Qu, Chemistry 2011, 17, 9590-9594.
[20] a) K. Yamashita, K. Mimori, H. Inoue, M. Mori, D. Sidransky, Cancer
research 2003, 63, 6575-6578; b) J. F. Novak, F. Trnka, Anticancer
Res. 2005, 25, 1157-1177.
[21] a) R. Mogaki, K. Okuro, R. Ueki, S. Sando, T. Aida, J. Am. Chem. Soc.
2019, 141, 8035-8040; b) R. Mogaki, P. K. Hashim, K. Okuro, T. Aida,
Chem. Soc. Rev. 2017, 46, 6480-6491; c) P. K. Hashim, K. Okuro, S.
Sasaki, Y. Hoashi, T. Aida, J. Am. Chem. Soc. 2015, 137, 15608-15611.
Acknowledgements
This study was supported by the Natural Science Foundation of
China (grant nos. 21820102009, 21871249, 21533008, and
91856205,) and the Key Program of Frontier of Sciences (CAS
QYZDJ-SSW-SLH052).
Conflict of Interest
The authors declare no conflict of interest.
This article is protected by copyright. All rights reserved.