Non-substituted nitrobenzene and -toluene are effectively
reduced in 85–89% yield (Table 4, entries 1 and 2). Except
for fluorine substituents, high yields of the corresponding
anilines are achieved in the presence of halide substituents
irrespective of their ring position (Table 4, entries 3–11). Even
3,4,5-trichoro-nitrobenzene produced selectively the respective
aniline in 84% yield (Table 4, entry 9). In none of these cases
significant amounts (>2%) of dehalogenation have been
observed. Notably, other reducible functional groups such as
cyano, nitro, ester groups as well as CQC double bonds
are not affected under these conditions. The reduction of
1,4-dinitrobenzene proceeds chemoselectively affording 83%
of 4-nitroaniline (Table 4, entry 17). The reduction of cyano-
substituted nitrobenzenes, which are important transformations
in organic chemistry, gave 56–82% of cyanoanilines (Table 4,
entries 18 and 19). To our delight the nitro group is highly
chemoselectively reduced in ethyl p-nitrocinnamate and
p-nitrostilbene (Table 4, entries 25 and 26). However, no
aniline was formed in the hydrosilylation of 3-nitrostyrene
and 4-nitrophenylacetate.
9 (a) J. Lipowitz and S. A. Bowman, J. Org. Chem., 1973, 38,
162–165; (b) K. A. Andrianov, V. I. Sidorov and
M. I. Filimonova, Zh. Obshch. Khim., 1977, 47, 485;
(c) H. R. Brinkman, W. H. Miles, M. D. Hilborn and
M. C. Smith, Synth. Commun., 1996, 26, 973–980; (d) J. Tormo,
D. S. Hays and G. C. Fu, J. Org. Chem., 1998, 63, 5296–5297;
(e) I. Jovel, L. Golomba, M. Fleisher, J. Popelis, S. Grinberga and
E. Lukevics, Chem. Heterocycl. Compounds, 2004, 40, 701–714;
(f) R. J. Rahaim, Jr. and R. E. Maleczka, Jr., Org. Lett., 2005, 7,
5087–5090; (g) R. J. Rahaim, Jr. and R. E. Maleczka, Jr., Synth-
esis, 2006, 3316–3340; (h) S. Srinivasan and X. Huang, Chirality,
2008, 20, 265–277; (i) R. G. de Noronha, C. C. Romao and
A. C. Fernandes, J. Org. Chem., 2009, 74, 6960–6964.
10 (a) Iron Catalysis in Organic Chemistry, ed. B. Plietker, Wiley-
VCH, Weinheim, 1st edn., 2008; (b) S. Enthaler, K. Junge and
M. Beller, Angew. Chem., Int. Ed., 2008, 47, 3317–3321;
(c) S. Gaillard and J.-L. Renaud, ChemSusChem, 2008, 1,
505–509.
11 (a) H. Brunner, R. Eder, B. Hammer and U. Klement,
J. Organomet. Chem., 1990, 394, 555–567; (b) H. Nishiyama and
A. Furuta, Chem. Commun., 2007, 760–762; (c) H. Nishiyama and
A.
Furuta,
Tetrahedron
Lett.,
2008,
49,
110–113;
(d) D. V. Gutsulyak, L. G. Kuzmina, J. A. K. Howard,
S. F. Vyboishchikov and G. I. Nikonov, J. Am. Chem. Soc.,
2008, 130, 3732–3733; (e) B. K. Langlotz, H. Wadepohl and
L. H. Gade, Angew. Chem., Int. Ed., 2008, 47, 4670–4674;
(f) A. M. Tondreau, E. Lobkovsky and P. J. Chirik, Org. Lett.,
2008, 10, 2789–2792; (g) C. Dal Zotto, D. Virieux and
J.-M. Campagne, Synlett, 2009, 276–278; (h) A. M. Tondreau,
J. M. Darmon, B. M. Wile, S. K. Floyd, E. Lobkovsky and
P. J. Chirik, Organometallics, 2009, 28, 3928–3940.
In summary, a new inexpensive and convenient iron-based
catalytic system consisting of FeBr2–Ph3P has been discovered
for the reduction of nitroarenes with organosilanes. The
procedure is general and the selectivity of the catalyst has
been demonstrated applying challenging substrates with
CQO, CRN, CQC, and OH groups.
12 Y. Sunada, H. Kawakami, T. Imaika, Y. Motoyama and
H. Nagashima, Angew. Chem., 2009, 121, 9675–9678.
13 (a) S. Enthaler, B. Hagemann, G. Erre, K. Junge and M. Beller,
Chem.–Asian J., 2006, 1, 598–604; (b) S. Enthaler, G. Erre,
M. K. Tse, K. Junge and M. Beller, Tetrahedron Lett., 2006, 47,
8095–8099; (c) N. Shaikh, K. Junge and M. Beller, Org. Lett., 2007,
9, 5429–5432; (d) S. Enthaler, B. Spilker, G. Erre, K. Junge,
M. K. Tse and M. Beller, Tetrahedron, 2008, 64, 3867–3876;
(e) N. Shaikh, K. Junge, S. Enthaler and M. Beller, Angew. Chem.,
Int. Ed., 2008, 47, 2497–2501; (f) S. L. Zhou, D. Addis, K. Junge,
S. Das and M. Beller, Chem. Commun., 2009, 4883–4885;
(g) S. L. Zhou, K. Junge, D. Addis, S. Das and M. Beller, Org.
Lett., 2009, 11, 2461–2464; (h) S. Zhou, K. Junge, D. Addis,
S. Das and M. Beller, Angew. Chem., Int. Ed., 2009, 48,
9507–9510.
14 (a) S. L. Buchwald and C. Bolm, Angew. Chem., 2009, 121,
5694–5695; (b) P.-F. Larsson, A. Correa, M. Carril,
P.-O. Norrby and C. Bolm, Angew. Chem., 2009, 121, 5801–5803.
15 General procedure for the hydrosilylation of nitroarenes:
0.12 mmol (31.5 mg) PPh3, 0.1 mmol (21.6 mg) FeBr2, and 1 mmol
of the corresponding nitroarene are mixed in a pressure tube and
flashed three times with vacuum and argon. Then, 2.5 mmol
PhSiH3 (308 mL) and 1.5 mL dry toluene are added. The mixture
is stirred for 16 hours in a preheated oil bath at 110 1C. After
cooling the pressure tube to room temperature diglyme or
hexadecane are added as internal standard and the mixture is
diluted with 4 mL THF. The reactionis quenched with 2 mL NaOH
(2 N) and stirred for 30 minutes. By adding 4 mL MeOH the two
phases were homogenized. The yield was determined by GC (HP5:
50-8-260/5-8-280/5-8-300). All amines are analyzed by GC–MS
and identified by comparison with authentic primary amines. The
reaction was scaled up by factor 5 for three substrates. The
corresponding amines were isolated and purified by column
chromatography (pentane–ethyl acetate = 5 : 1 - 2 : 1).
Notes and references
1 N. Ono, The Nitro Group in Organic Synthesis, Wiley-VCH,
New York, 2001.
2 (a) H. U. Blaser, A. Baiker and R. Prins, in Heterogeneous Catalysis
and Fine Chemicals, ed. H. U. Blaser, E. Schmidt, Elsevier,
Amsterdam, 1997, vol. IV, pp. 17–30; (b) R. S. Downing,
P. J. Kunkeler and H. van Bekkum, Catal. Today, 1997, 37,
121–136; (c) G. Wegener, M. Brandt, L. Duda, J. Hofmann,
B. Klesczewski, D. Koch, R. Kumpf, H. Orzesek, H. Pirkl, C. Six,
C. Steinlein and M. Weisbeck, Appl. Catal., A, 2001, 221, 303–335.
3 H. U. Blaser, U. Siegrist and M. Studer, in Fine Chemicals Through
Heterogeneous Catalysis, ed. R. A. Sheldon, H. van Bekkum,
Wiley-VCH, Weinheim, 2001, p. 389.
4 For an excellent review on recent advances on heterogeneous
hydrogenation of functionalized nitroarenes see: H. U. Blaser,
H. Steiner and M. Studer, ChemCatChem, 2009, 1, 210–221.
5 P. Rylander, in Catalytic Hydrogenation in Organic Synthesis,
ed. P. Rylander, Academic Press, New York, 1979, pp. 113–137.
6 (a) P. Baumeister, H. U. Blaser and M. Studer, Catal. Lett., 1997,
49, 219–222; (b) H. U. Blaser, C. Malan, B. Pugin, F. Spindler,
H. Steiner and M. Studer, Adv. Synth. Catal., 2003, 345, 103–151.
7 (a) J. F. Knifton, J. Org. Chem., 1976, 41, 1200–1206;
(b) S. G. Harsy, Tetrahedron, 1990, 46, 7403–7412; (c) P. M. Reis
and B. Royo, Tetrahedron Lett., 2009, 50, 949–952; (d) A. Corma,
C. Gonzalez-Arellano, M. Iglesias and F. Sanchez, Appl. Catal., A,
´ ´
2009, 356, 99–102.
8 (a) H. Imai, T. Nishiguchi and K. Fukuzumi, Chem. Lett., 1976,
655–656; (b) Y. Watanabe, T. Ohta, Y. Tsuji, T. Hiyoshi and
Y. Tsuji, Bull. Chem. Soc. Jpn., 1984, 57, 2440–2444;
(c) A. B. Taleb and G. Jenner, J. Mol. Catal., 1994, 91, L149–L153.
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 1769–1771 | 1771