High-Pressure Processing and Enzyme Structure and Activity
J. Agric. Food Chem., Vol. 55, No. 23, 2007 9529
LITERATURE CITED
(17) Müller, K.; Lüdermann, H.-D.; Jaenicke, R. Thermodynamics and
mechanism of high pressure deactivation and dissociation of
porcine lactic dehydrogenase. Pressure-induced structural changes
of pig heart lactic dehydrogenase. Biophys. Chem. 1982, 6, 1–7.
(18) Bergmeyer, H. U.; Bernt, E. In Methods in Enzymatic Analysis;
Bergmeyer, H. U., Ed.; John Wiley & Sons: New York, 1974;
Vol. 2, pp 574–578.
(19) Pandey, P. K.; Ramaswamy, H. S. Effect of high pressure
treatment of milk on lipase and γ-glutamyl transferase activity.
J. Food Biochem. 2004, 28, 449–462.
(20) Andrade, M. A.; Chacón, P.; Merelo, J. J; Morán, F. Evaluation
of secondary structure of proteins from UV circular dichroism
using an unsupervised learning neural network. Prot. Eng. 1993,
6, 383–390.
(21) Merelo, J. J.; Andrade, M. A; Prieto, M.; Morán, F. Proteinotopic
Feature Maps. Neurocomputing 1994, 6, 443–454.
(22) Seyderhelm, I; Bogulawski, S.; Michaelis, G.; Knorr, D. Pressure
inactivation of selected food enzymes. J. Food Sci. 1996, 61, 308–
310.
(23) Hammonds, G. Least-squares analysis of circular dichroism spectra
of proteins. Eur. J. Biochem. 1997, 74, 421–424.
(24) Rigos, C. F.; Santos, H. L.; Thedei, G. J.; Ward, R. J.; Ciancaglini,
P. Influence of enzyme conformational changes on catalytic
activity investigated by circular dichroism spectroscopy. Int. Union
Biochem. Mol. Biol. 2003, 31, 329–332.
(1) Lombardi, P.; Avallone, L.; D’Angelo, A.; Mor, T.; Bogin, E.
Buffalo-milk enzyme levels, their sensitivity to heat inactivation,
and their possible use as markers for pasteurization. J. Food Prot.
2000, 63, 370–373.
(2) Buffa, M.; Guamis, B.; Trujillo, A. Specific effect of high pressure
treatment of milk on cheese proteolysis. J. Dairy Res. 2005, 72,
385–392.
(3) Mussa, M. D.; Ramaswany, H. S. Ultra high pressure pasteuriza-
tion of milk: kinetics of microbial destruction and changes in
physico-chemical characteristics. Lebnensm. Wiss. u.- Technol.
1997, 30, 551–557.
(4) Sun, N. K.; Lee, S.; Bin, S. K. Effect of high pressure treatment
on the molecular properties of mushroom polyphenoloxidase.
Lebensm.-Wiss. Technol. Food Sci. Technol. 2002, 35 (4), 315–
318.
(5) Claeys, W. L.; Indrawati, Van Loey, A. M.; Hendrickx, M. E.
Review: Are intrinsic TTI for thermal processed milk applicable
for high pressure processing assessment. InnoVatiVe Food Sci.
Emerging Technol. 2003, 4, 1–14.
(6) Ludikhuyze, L.; Claeys, W; Hendrickx, M. E. Combined pressure-
temperature inactivation of alkaline phosphatase in bovine milk:
a kinetic study. J. Food Sci. 2000, 65, 155–160.
(25) Yan, S. L.; Lui, Y.; Tian, X. J.; Zhang, Y. X.; Zhou, H. M. Effect
of extraneous zinc on calf intestinal. J. Prot. Chem. 2003, 22,
371–375.
(7) Yokata, Y. Purification and characterization of alkaline phos-
phatase in cultured rat liver cells. J. Biochem. 1978, 83, 1293–
1298.
(26) Wojciechowski, C. L.; Cardia, J. P.; Kantrowitz, E. R. Alkaline
phosphatase from hyperthermophilic bacterium T. maritima
requires cobalt for activity. Prot. Sci. 2002, 11, 903–911.
(27) (a) Zhifang, C.; Zhen, X.; Yongdoo, P.; Haimeng, Z. Activation
of calf intestinal alkaline phosphatase by trifluoroethanol. Tsinghua
Sci. Technol. 2001, 6, 426–431. (b) Wang, X. Y.; Meng, F.-G.;
Zhou, H.-M. Inactivation and conformational changes of creatine
kinase in hexafluoroisopropanol solutions. Biochem. Cell Biol.
2003, 81, 327–333.
(28) Kinsho, T.; Ueno, H.; Hayashi, R.; Hashizume, C.; Kimura, K.
Sub-Zero temperature inactivation of carboxipetidase Y under high
hydrostatic pressure. Eur. J. Biochem. 2002, 269, 4666–4674.
(29) Chapleau, N.; Mangavel, C.; Compoint, J. P.; de Lamballerie-
Anto, M. Effect of high pressure processing on myofibrillar protein
structure. J. Sci. Food. Agric. 2003, 84, 66–74.
(8) Gyurcsanyi, E. R.; Bereczki, A.; Nagy, G.; Neuman, M. R.;
Lindner, E. Amperometric microcells for alkaline phosphatase
assay. Analyst 2002, 127, 235–240.
(9) Dinnella, C.; Monteleone, E.; Farenga, M. F.; Hourigan, J. A.
The use of enzymes for thermal process monitoring: modification
of milk alkaline phosphatase heat resistance by means of an
immobilization technique. Food Control 2004, 15, 427–433.
(10) Rademacher, B.; Hinruichs, J. Effects of high pressure treatment
on indigenous enzyme in bovine milk: reactions, inactivation and
potential applications. Int. Dairy J. 2006, 16, 655–661.
(11) Nguyen, B. L; Loey, V. A.; Fachin, D.; Verlent, I.; Hendrickx,
I. M. Purification, characterization, thermal, and high-pressure
inactivation of pectin methylesterase from bananas (cv Cavendish).
Biotechnol. Bioeng. 2002, 78, 683–690.
(30) Brahms, S.; Brahms, J. Determination of protein secondary
structure in solution by vacuum ultraviolet circular dichroism. J.
Mol. Biol. 1980, 138, 149–178.
(12) Kussengrager, K. D.; van, Hooijdonk, A. C. M. Lactoperoxidase:
Physico-chemical properties, occurrence, mechanism of action and
application. Br. J. Nutr. 2000, 84, 19–25.
(31) Borgstahl, G. E. O. How to use dynamic light scattering to improve
the likehood of growing macromolecular crystals. In Macromo-
lecular Crystallography Protocols: Preparation and Crystalliza-
tion of Macromolecules; Doublie, S., Ed.; Humana Press: Totowa,
NJ, 2001; Vol. 1, pp 109–130.
(32) Banochowicz, E. Light scattering studies of proteins under
compression. Biochim. Biophys. Acta 2006, 1764, 405–413.
(13) Soler, J.; Arrig, D. D.; Busto, F.; Cadenas, E. Lactase dehydro-
genase in phycomyces blakesleeamus. Biochem. J. 1982, 203,
383–391.
(14) Müller, K; Lüdermann, H.-D.; Jaenicke, R. High pressure effects
on the activity of glycolytic enzyme. Biophys. Chem. 1975, 14,
90–98.
(15) Schade, B. C.; Lüdermann, H.-D.; Rudolph, R.; Jaenicke, R. High
pressure effects on the activity of glycolytic enzyme. Biophys.
Chem. 1980, 11, 257–263.
(16) Müller, K.; Lüdermann, H.-D.; Jaenicke, R. Pressure-induced
structural changes of pig heart lactic dehydrogenase. Biophys.
Chem. 1981, 14, 101–110.
Received for review May 23, 2007. Revised manuscript received August
29, 2007. Accepted August 30, 2007. This work was funded by a USDA
Milk Safety Grant to The Pennsylvania State University.
JF071518Q