ACS Catalysis
Research Article
highly likely that copper clusters are present in the reaction
mixture.
ACKNOWLEDGMENTS
■
We thank the Welch Foundation (Grant E-1571), Norman
Hackerman Texas Advanced Research Program, NIGMS
(Grant R01GM077635), and Camille and Henry Dreyfus
Foundation for supporting this research. We thank Mr. Chieng-
Hung Li for help with TEM analysis.
The possible reaction mechanism is shown in Scheme 2.13
Reduction of Cu(I) with diethylzinc affords Cu(0) via EtCu
Scheme 2. Proposed Reaction Mechanism
REFERENCES
■
(1) (a) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107,
2365. (b) Boogaerts, I. I. F.; Nolan, S. P. Chem. Commun. 2011, 47,
3021. (c) Nakamura, A.; Ito, S.; Nozaki, K. Chem. Rev. 2009, 109,
5215. (d) Ackermann, L. Angew. Chem., Int. Ed. 2011, 50, 3842.
(e) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kuhn, F.
̈
E. Angew. Chem., Int. Ed. 2011, 50, 8510. (f) Tsuji, Y.; Fujihara, T.
Chem. Commun. 2012, 48, 9956. (g) Martín, R.; Kleij, A. W.
ChemSusChem 2011, 4, 1259.
(2) (a) Lacis, A. A.; Schmidt, G. A.; Rind, D.; Ruedy, R. A. Science
2010, 330, 356. (b) Haszeldine, R. S. Science 2009, 325, 1647.
(3) (a) Wanklyn, J. A. Liebigs Ann. 1858, 107, 125. (b) Kekule,
́
A.
Liebigs Ann. 1866, 137, 129.
(4) (a) DePasquale, R. J.; Tamborski, C. J. Org. Chem. 1969, 34,
1736. (b) Ebert, G. W.; Juda, W. L.; Kosakowski, R. H.; Ma, B.; Dong,
L.; Cummings, K. E.; Phelps, M. V. B.; Mostafa, A. E.; Luo, J. J. Org.
Chem. 2005, 70, 4314.
(5) (a) Yamamoto, T.; Yamamoto, A. Chem. Lett. 1978, 615. (b) Hill,
M.; Wendt, O. F. Organometallics 2005, 24, 5772. (c) Behr, A.; Kanne,
U.; Thelen, G. J. Organomet. Chem. 1984, 269, C1. (d) Miyashita, A.;
Yamamoto, A. J. Organomet. Chem. 1976, 113, 187. (e) Tsuda, T.;
Ueda, K.; Saegusa, T. J. Chem. Soc., Chem. Commun. 1974, 380.
(f) Allen, O. R.; Dalgarno, S. J.; Field, L. D.; Jensen, P.; Willis, A. C.
Organometallics 2009, 28, 2385. (g) Dubot, G.; Mansuy, D.; Lecolier,
S.; Normant, J. F. J. Organomet. Chem. 1972, 42, C105. (h) Marsich,
N.; Camus, A.; Nardin, G. J. Organomet. Chem. 1982, 239, 429.
(i) Kolomnikov, I. S.; Gusev, A. O.; Belopotapova, T. S.; Grigoryan, M.
Kh.; Lysyak, T. V.; Struchkov, Y. T.; Vol’pin, M. E. J. Organomet. Chem.
intermediate.14 The Cu(0) species oxidatively adds ArI to give
ArCu(I) complex. Insertion of CO2 gives a copper carboxylate,
which upon reaction with diethylzinc regenerates Cu(0) via
EtCu and forms zinc carboxylate. The lower reactivity of
electron-deficient aryl iodides is curious and may have
implications with respect to the reaction mechanism. Oxidative
additions are typically faster for electron-deficient aryl iodides.15
Hence, the turnover-limiting step, at least for electron-poor aryl
iodides, may be the carboxylation of arylcopper species. A
reversible aryl transfer between copper and zinc is likely.6i
However, reaction of CO2 with carbon−zinc bonds is probably
slow compared to insertion into copper−carbon bonds.13
Propionic acid was not observed in crude reaction mixtures
showing that lifetime of ethylcopper reagent is low.14
In conclusion, we have developed a mild method for
carboxylation of aryl iodides. The reaction employs low
loadings of copper iodide/TMEDA or DMEDA catalyst, 1
atm of CO2, DMSO or DMA solvent, and proceeds at 25−70
°C. Excellent functional group tolerance is observed, with ester,
bromide, chloride, fluoride, ether, amino, hydroxy, and carbonyl
functionalities tolerated. Hindered aryl iodides such as
iodomesitylene can also be carboxylated. The mechanism likely
involves intermediacy of copper clusters.
1974, 69, C10. (j) Darensbourg, D. J.; Grotsch, G.; Wiegreffe, P.;
̈
Rheingold, A. L. Inorg. Chem. 1987, 26, 3827. (k) Bhattacharyya, K. X.;
Akana, J. A.; Laitar, D. S.; Berlin, J. M.; Sadighi, J. P. Organometallics
2008, 27, 2682. (l) Mankad, N. P.; Gray, T. G.; Laitar, D. S.; Sadighi, J.
P. Organometallics 2004, 23, 1191.
(6) Review: (a) Correa, A.; Martín, R. Angew. Chem., Int. Ed. 2009,
48, 6201. (b) Takaya, J.; Tadami, S.; Ukai, K.; Iwasawa, N. Org. Lett.
2008, 10, 2697. (c) Vechorkin, O.; Hirt, N.; Hu, X. Org. Lett. 2010, 12,
3567. (d) Ueda, M.; Miyaura, N. J. Org. Chem. 2000, 65, 4450.
(e) Mori, M. Eur. J. Org. Chem. 2007, 4981. (f) Ochiai, H.; Jang, M.;
Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2008, 10, 2681.
(g) Wu, J.; Hazari, N. Chem. Commun. 2011, 1069. Cycloadditions
(h) Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307.
(i) Williams, C. M.; Johnson, J. B.; Rovis, T. J. Am. Chem. Soc. 2008,
130, 14936. (j) Ohishi, T.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed.
2008, 47, 5792. (k) Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008,
130, 7826. (l) Kobayashi, K.; Kondo, Y. Org. Lett. 2009, 11, 2035.
(7) Correa, A.; Martín, R. J. Am. Chem. Soc. 2009, 131, 15974.
(8) (a) Fujihara, T.; Nogi, K.; Xu, T.; Teao, J.; Tsuji, Y. J. Am. Chem.
Soc. 2012, 134, 9106. (b) Leon, T.; Correa, A.; Martín, R. J. Am. Chem.
Soc. 2013, 135, 1221.
ASSOCIATED CONTENT
■
S
* Supporting Information
(9) Blakemore, P. R.; Marsden, S. P.; Vater, H. D. Org. Lett. 2006, 8,
773.
(10) Rieke, R. D. Science 1989, 246, 1260.
(11) Widegren, J. A.; Finke, R. G. J. Mol. Catal. A: Chem. 2003, 198,
317.
Detailed experimental procedures and characterization data for
new compounds. This material is available free of charge via the
(12) Analysis by TEM was inconclusive. Please see Supporting
Information for TEM data.
AUTHOR INFORMATION
■
(13) A reviewer suggested that Et2Zn may react with ArI to generate
ArZnR species. Acid quench of reaction run under standard conditions
but omitting CuI catalyst and CO2 does not give a measurable amount
of ArH showing that non-catalyzed transmetallation does not occur to
a measurable extent. However, CuI catalyzes transmetallation between
Corresponding Author
Notes
The authors declare no competing financial interest.
2419
dx.doi.org/10.1021/cs400443p | ACS Catal. 2013, 3, 2417−2420