C. Liu, D.-M. Shen, Q.-Y. Chen
FULL PAPER
ture, taken up in Et2O, and transferred to a separatory funnel. The
mixture was washed with water three times and the organic layer
was filtered through a short silica column. The filtrate was collected
and the solvents were evaporated to dryness to yield the desired
products. This compound was sufficiently pure for further reactions
and an analytical sample was obtained by flash column chromatog-
raphy using petroleum ether as eluent.
[1]
[2]
The Porphyrin Handbook (Eds.: K. M. Kadish, K. M. Smith,
R. Guilard), Academic Press, San Diego, 2000–2003, vol. 1–
20.
a) F. Montanari, L. Casella, Metalloporphyrin-Catalyzed Oxi-
dations, Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 1994; b) R. A. Sheldon, Metalloporphyrins in Catalytic
Oxidations, Marcel Dekker, New York, 1994.
[Co{TPP(C8F17)4}] (Co2): Yield: 97 mg (95%). MS (MALDI): m/z
= 2343.0 [M+]. UV/Vis (PE): λmax (%) = 435 (17.5), 574 (1.3), 623
(1.0) nm. HRMS (MALDI): calcd. for [C76H24N4F68Co]+
2343.0232; found 2343.02415. C76H24CoF68N4·H2O (2361.0):
calcd. C 38.65, H 1.11, N 2.37; found C 38.47, H 1.45, N 2.17.
[3]
a) D. Dolphin, T. G. Traylor, L. Y. Xie, Acc. Chem. Res. 1997,
30, 251–259; b) B. Meunier, Chem. Rev. 1992, 92, 1411–1456;
c) D. Mansuy, Coord. Chem. Rev. 1993, 125, 129.
P. G. Gassman, A. Ghosh, J. Almlöf, J. Am. Chem. Soc. 1992,
114, 9990–10000.
a) J. G. Goll, K. T. Moore, A. Ghosh, M. J. Therien, J. Am.
Chem. Soc. 1996, 118, 8344–8354; b) S. G. DiMagno, R. A.
Williams, M. J. Therien, J. Org. Chem. 1994, 59, 6943–6948.
For selective reviews on fluorous biphasic chemistry, see:a)
Handbook of Fluorous Chemistry (Eds.: J. A. Gladysz, D. P.
Curran, I. T. Horváth), Wiley-VCH, Weinheim, 2004; b) Mod-
ern Fluoroorganic Chemistry (Ed.: P. Kirsch), Wiley-VCH,
Weinheim, 2004; c) F. Montanari, G. Pozzi, S. Quici, in Green
Chemistry: Challenging Perspectives (Eds.: P. Tundo, P. An-
astas), Oxford, New York, 2000, chapter 8, p. 145–161; d) A. P.
Dobbs, M. R. Kimberley, J. Fluorine Chem. 2002, 118, 3–17
and references cited therein.
[4]
[5]
[Ni{TPP(C8F17)4}] (Ni2): Yield: 96 mg (94%). MS (MALDI): m/z
= 2343.0 [M+]. UV/Vis (PE): λmax (%) = 441 (28.4), 560 (1.9), 600
(1.0) nm. HRMS (MALDI): calcd. for [C76H24N4F68Ni]+
2343.0294; found 2343.02630. C76H24F68N4Ni·1.5H2O (2369.0):
calcd. C38.50, H 1.15, N 2.36; found C 38.12, H 0.85, N 2.29.
[6]
General Procedure for Iron and Manganese Insertion into
H2TPP(C8F17)4 (2):[12b] H2TPP(C8F17)4 (2; 100 mg, 1.0 equiv.),
MCl2·4H2O (5.0 equiv.), 2,6-lutidine (two drops), and Et2O/MeOH
(4:1, v/v; 50 mL) were heated at 40 °C overnight. The resulting mix-
ture was cooled to room temperature and washed with water three
times. The organic layer was dried with Na2SO4 and the solvents
were evaporated to dryness. The resulting solid was purified by
flash column chromatography with petroleum ether as eluent.
[7]
[8]
J. G. Riess, M. L. Blanc, Pure Appl. Chem. 1982, 54, 2383–
2406.
S. G. Dimagno, P. H. Kussault, J. A. Schultz, J. Am. Chem. Soc.
1996, 118, 5312–5313.
[Fe{TPP(C8F17)4}Cl] (Fe2): Yield: 94 mg (91%). MS (MALDI): m/z
= 2375.0 [M+]. UV/Vis (PE): λmax (%) = 364 (8.3), 442 (23.2), 512
(1.0), 560 (1.3) nm. HRMS (MALDI): calcd. for
[C76H24N4F68ClFe]+ 2374.9925; found 2374.99475. C76H24F68FeN4
(2340.0): calcd. C 38.41, H 1.02, N 2.36; found C 38.36, H 1.16, N
2.24.
[9] G. Pozzi, F. Montanari, S. Quici, Chem. Commun. 1997, 69–
70.
[10] a) C. Liu, Q. Y. Chen, Synlett 2005, 8, 1306–1310; b) C. Liu,
Q. Y. Chen, Eur. J. Org. Chem. 2005, 3680–3686; c) Z. Zeng,
C. Liu, L. M. Jin, C. C. Guo, Q. Y. Chen, Eur. J. Org. Chem.
2005, 306–316; d) D. M. Shen, C. Liu, Q. Y. Chen, Chem. Com-
mun. 2005, 4982–4984; e) C. Liu, D. M. Shen, Q. Y. Chen,
Chem. Commun. 2006, 770–772; f) Z. Zeng, L. M. Jin, C. C.
Guo, Q. Y. Chen, Acta Chim. Sin. 2004, 62, 288–294; g) L.
Chen, L. M. Jin, C. C. Guo, Q. Y. Chen, Synlett 2005, 6, 963–
970; h) L. M. Jin, L. Chen, C. C. Guo, Q. Y. Chen, J. Porphy-
rins Phthalocyanines 2005, 9, 109–120; i) L. M. Jin, L. Chen,
J. J. Yin, C. C. Guo, Q. Y. Chen, J. Fluorine Chem. 2005, 126,
1321–1326; j) L. M. Jin, Z. Zeng, C. C. Guo, Q. Y. Chen, J.
Org. Chem. 2003, 68, 3912–3917.
[11] P. Bhyrappa, V. Krishnan, Inorg. Chem. 1991, 30, 239–245.
[12] a) A. D. Adler, F. R. Longo, F. Kampas, J. Kim, J. Inorg. Nucl.
Chem. 1970, 32, 2443–2445; b) V. V. Borovkov, J. M. Lintulu-
oto, Y. Inoue, Synlett 1999, 1, 61–62.
[13] G. Pozzi, I. Colombani, M. Miglioli, F. Montanari, S. Quici,
Tetrahedron 1997, 53, 6145–6162.
[Mn{TPP(C8F17)4}Cl] (Mn2): Yield: 97 mg (93%). MS (MALDI):
m/z = 2374.0 [M+]. UV/Vis (PE): λmax (%) = 446 (10.5), 496 (3.6),
610 (1.0), 680 (1.0) nm. HRMS (MALDI): calcd. for
[C76H24N4F68ClMn]+
2373.9891;
found
2374.99785.
C76H24ClF68MnN4 (2340.0): calcd. C 38.43, H 1.02, N 2.36; found
C 38.43, H 1.22, N 2.44.
General Procedure for the Fluorous Biphasic Catalytic Oxidation of
Alkenes and Aldehydes: A 50-mL Schlenk flask was charged with
an alkene or aldehyde (1.0 mmol), 2-methylpropanal (2.0 mmol),
Co2 (0.4 mol-%), perfluorodecalin (5 mL), and CH3CN (5 mL).
The resulting mixture was stirred vigorously under 1 atm of air in
the dark. After completion of the reaction, the fluorous layer was
recovered, washed with CH3CN, and reused in further runs. The
combined CH3CN layers were subjected to GC analysis or flash
column chromatography to yield the desired products.
[14] a) S. Colonna, N. Gaggero, F. Montanari, G. Pozzi, S. Quici,
Eur. J. Org. Chem. 2001, 181–186; b) G. Pizzi, M. Cavazzini,
F. Cinato, F. Montanari, S. Quici, Eur. J. Org. Chem. 1999,
1947–1955.
[15] a) W. Nam, H. J. Kim, S. H. Kim, R. Y. N. Ho, J. S. Valentine,
Inorg. Chem. 1996, 35, 1045–1049; b) T. Mukaiyama, T. Yam-
ada, Bull. Chem. Soc. Jpn. 1995, 68, 17–35.
Acknowledgments
We thank the Natural Science Foundation of China (nos. 20272026,
D20032010 and 20532040) for support of this work.
Received: January 16, 2006
Published Online: April 21, 2006
2706
www.eurjoc.org
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2006, 2703–2706