Fe-Catalyzed Oxidation of Cycloalkanes and Alkylarenes with H2O2
FULL PAPERS
2004, p. 215; f) X. Baucherel, L. Gonsalvi, I. W. C. E.
Arends, S. Ellwood, R. A. Sheldon, Adv. Synth. Cat.
2004, 346, 286; g) Y. Ishii, S. Sakagushi, in: Modern Oxi-
dation Methods, (Ed.: J.-E. Bꢃckvall), Wiley-VCH, Wein-
heim, 2004, p. 119.
Experimental Section
Materials
All the chemicals are commercially available and have been
[2] For overviews on the use of hydrogen peroxide in oxida-
tion reactions, see: a) Catalytic Oxidations with Hydro-
gen Peroxide as Oxidant, (Ed.: G. Strukul), Kluwer Aca-
demic, Dordrecht, 1992; b) C. W. Jones, Applications of
Hydrogen Peroxides and Derivatives, Royal Society of
Chemistry, Cambridge, 1999; c) R. Noyori, M. Aoki, K.
Sato, Chem. Commun. 2003, 1977; d) B. S. Lane, K. Bur-
gess, Chem. Rev. 2003, 103, 2458.
[3] Reviews on iron-catalyzed oxidations: a) M. Fontecave,
S. Menage, C. Duboc-Toia, Coord. Chem. Rev. 1998,
178–180, 1555; b) M. Costas, K. Chen, L. Que Jr., Coord.
Chem. Rev. 2000, 200–202, 517; c) M. Costas, M. P.
Mehn, M. P. Jensen, L. Que Jr., Chem. Rev. 2004, 104,
939; d) see also: G. B. Shulpꢂin, G. V. Nizova, Y. N. Ko-
zlov, L. G. Cuervo, G. Sꢀss-Fink, Adv. Synth. Cat. 2004,
346, 317 and references cited therein.
used as provided, without further purification. Acetonitrile
with HPLC grade purity has been used.
General Procedure for the Oxidation of Cycloalkanes
or Alkylarenes
To a stirred solution of the substrate 1–5 (1 mmol), Fe(ClO4)2 ·
6 H2O (36.6 mg, 0.1 mmol), acetic acid (12.0 mg, 0.2 mmol)
and nitrobenzene (as internal standard, 0.2 mmol, 24.6 mg) in
MeCN (5 mL) was added 30% aqueous H2O2 (5 mmol,
567 mg) over 4 h (1 mmol/h). After 5 h, the reaction was
quenched with MnO2, filtered on Na2SO4 and analyzed. Com-
pounds 6–11 were isolated by column chromatography (pen-
tane/diethyl ether, 3:1).
Analyses
[4] a) D. T. Sawyer, A. Sobkowiak, T. Matsushita, Acc.
Chem. Res. 1996, 29, 409; b) D. T. Sawyer, Coord.
Chem. Rev. 1997, 165, 297; c) C. Walling, Acc. Chem.
Res. 1998, 31, 155; d) P. A. MacFaul, D. D. M. Wayner,
K. U. Ingold, Acc. Chem. Res. 1998, 31, 159; e) S. Gold-
stein, D. Meyerstein, Acc. Chem. Res. 1999, 32, 547.
[5] a) D. H. R. Barton, D. Doller, Acc. Chem. Res. 1992, 25,
504; b) D. H. R. Barton, Tetrahedron 1998, 54, 5805; c) P.
Stavropoulos, R. ꢄelenligil-ꢄetin, A. E. Tapper, Acc.
Chem. Res. 2001, 34, 745.
[6] For the use of acetonitrile in oxidation reactions see, for
example: a) J. T. Groves, M. Van Der Puy, J. Am. Chem.
Soc. 1976, 98, 5290; b) R. H. Fish, M. S. Konings, K. J.
Oberhausen, R. H. Fong, W. M. Yu, G. Christou, J. B.
Vincent, D. K. Coggin, R. M. Buchanan, Inorg. Chem.
1991, 30, 3002; b) D. H. R. Barton, F. Launay, Tetrahe-
dron 1998, 54, 12699.
NMR and GC analyses were performed on a Varian Inova 400
(400 MHz) and a Hewlett-Packard HP 5890 Series II gas chro-
matograph, respectively. Authentic samples of 6–11 were used
to assign the peaks in chromatograms.
Alkylarenes (1–3): GC analyses were conducted using a FS-
Phenyl-Silcapillary pre-column (3 mꢃ0.250 mm) and a Cyclo-
dex b-I/P capillary column (25 mꢃ0.250 mm), with N2 as the
carrier gas.
Cycloalkanes (4, 5): GC analyses were conducted using a HP
Ultra 2capillarycolumn (25 mꢃ0.2 mm), withN2 asthe carrier
gas.
The yield of compound 5 was determined by 1H NMR (CD3
CN) using benzene as internal standard.
Acknowledgements
[7] a) M. C. White, A. G. Doyle, E. N. Jacobsen, J. Am.
Chem. Soc. 2001, 123, 7194; b) J. Legros, C. Bolm, An-
gew. Chem. Int. Ed. 2004, 43, 4225.
[8] Noteworthy is the fact that this system is also capable of
oxidizing alcohols to ketones. For example, 1-phenyl-
ethanol was converted into acetophenone with an excel-
lent selectivity (>90%). For a recent report on FeBr2-
mediated oxidations of alcohols, see: E. Martin, A. Gar-
rone, Tetrahedron Lett. 2003, 44, 549.
We are grateful to the Fonds der Chemischen Industrie and the
Deutsche Forschungsgemeinschaft (SPP 1118) for financial
support. C. P. thanks the Graduiertenkolleg (GRK 440) for a
predoctoral stipend, and J. L. acknowledges the Alexander
von Humboldt Foundation for a postdoctoral fellowship.
References and Notes
[9] In some cases, small amounts of oxidation products of the
aromatic ring have also been detected by GC analysis.
[10] Non-catalyzed oxidations of alkanes with H2O2 in pure
CF3CO2H are known to afford alkyl trifluoroacetates
as major products: a) N. C. Deno, L. A. Messer, J.
Chem. Soc. Chem. Commun. 1976, 1051; b) N. C. Deno,
E. J. Jedziniak, L. A. Messer, M. D. Meyer, S. G. Stroud,
E. S. Tomeszko, Tetrahedron 1977, 33, 2503.
[1] a) R. A. Sheldon, J. K. Kochi, Metal-Catalyzed Oxida-
tions of Organic Compounds, Academic Press, New
York, 1981; b) M. Hudlicky, Oxidations in Organic
Chemistry, ACS Monograph 186, American Chemical
Society, Washington DC, 1990; c) A. E. Shilov, G. B.
Shulꢂpin, Chem. Rev. 1997, 97, 2879; d) R. Sheldon,
I. W. C. E. Arends, in: Transition Metals for Organic Syn-
thesis, Vol. 2, (Eds.: M. Beller, C. Bolm), Wiley-VCH,
Weinheim, 2nd edn., 2004, p. 201; e) G. B. Shulꢂpin, in:
Transition Metals for Organic Synthesis, Vol. 2, (Eds.:
M. Beller, C. Bolm), Wiley-VCH, Weinheim, 2nd edn.,
[11] U. Schuchardt, D. Cardoso, R. Sercheli, R. Pereira, R. S.
´
da Cruz, M. C. Guerreiro, D. Mandelli, E. V. Spinace,
E. L. Pires, Appl. Catal. A: General 2001, 211, 1.
Adv. Synth. Catal. 2005, 347, 703–705
asc.wiley-vch.de
ꢁ 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
705