could proceed directly with sufficiently thiophilic orga-
nometallic cross-coupling partners without the require-
ment of a stoichiometric Cu(I) carboxylate activator (eq
2).
Palladium-Catalyzed Coupling of Thiol
Esters with Aryl and Primary and
Secondary Alkyl Organoindium Reagents
Bryan W. Fausett and Lanny S. Liebeskind*
stoich
R1-SR′ + R2-B(OH)2 Cu(I)OCOR8 R1-R2 + Cu-SR′ +
Emory University, Department of Chemistry, 1515 Dickey
Drive, Atlanta, Georgia 30322
cat. Pd
RC(O)O-B(OH)2 (1)
cat. Pd
R1-SR′ + R2-M if M is thiophilic8 R1-R2 + M-SR (2)
Received January 19, 2005
Pursuing this analysis led to consideration of the
indium-sulfur bond, which is assumed to be strong on
the basis of the Pearson Hard-Soft Principle,5 and thus
to an exploration of the palladium-catalyzed coupling of
thiol esters with organoindium reagents.6 The latter are
versatile coupling partners in their own right.7,8 Initially
0.4 equiv of various triorganoindium reagents9 were
treated with S-4-chlorophenyl 4-methylbenzothioate in
the presence of 5% Pd(CH3CN)2Cl2 as precatalyst in THF
at 55 °C to probe the number of organic groups that
would transfer from indium to form the product ketone
(Table 1). These results demonstrated that aryl and
primary alkyl triorganoindium reagents easily trans-
ferred between 2 and 3 of the organic groups, while only
one secondary alkyl was readily transferred.10 Conversion
was high in all cases since unreacted thiol ester could be
recovered (entry 5). The coupling with vinyl- and al-
kynylindium reagents performed poorly, giving only a
trace of or no product.11 Control experiments without Pd
(entries 6-8) demonstrated that triphenylindium was
capable of transferring the first of its three phenyl groups
to the thiol ester in an uncatalyzed reaction to give 33%
yield of the corresponding ketone. This uncatalyzed
reactivity did not extend to either tri-n-butyl- or tri-sec-
Thiol esters and organoindium reagents undergo palladium-
catalyzed cross-coupling under mild conditions to give
ketones in moderate to excellent yields. Aryl and primary/
secondary alkyl organoindium reagents can be used as
coupling partners. This method has two advantages over the
cross-coupling of thiol esters with boron and tin reagents:
(1) no added copper reagent is required to mediate the
reaction and (2) for the case of alkyl transfer, no added base
is required to activate organoindium reagents for cross-
coupling as is required for the coupling of alkyl boron
reagents with thiol esters.
Thioorganics are excellent cross-coupling partners with
boronic acids1 and organostannanes2 under mild and
nonbasic conditions.3 The breadth of this methodology is
still being explored and has recently been extended to
the cross-coupling of thiol esters with alkyl boron re-
agents.4 With boronic acids in particular, the palladium-
catalyzed coupling of thioorganics relies on the unique
ability of a copper(I) carboxylate additive to labilize a
palladium thiolate ligand toward transmetalation, while
at the same time providing a stoichiometric quantity of
a borophilic carboxylate counterion to pair with the
-B(OH)2 moiety (eq 1). This understanding suggests that
the palladium-catalyzed cross-coupling of thioorganics
(5) Pearson, R. G. Chemical Hardness; Wiley-VCH Verlag GmbH:
Weinheim, Germany, 1997.
(6) Recent syntheses of ketones via cross-coupling methods: (a)
Zhang, Y.; Rovis, T. J. Am. Chem. Soc. ASAP, Nov. 18, 2004, 126,
15964-15965. (b) Kells, K. W.; Chong, J. M. J. Am. Chem. Soc. 2004,
126, 15666-15667. (c) Tatamidani, H.; Yokota, K.; Kakiuchi, F.;
Chatani, N. J. Org. Chem. 2004, 69, 5615. (d) Tatamidani, H.;
Kakiuchi, F.; Chatani, N. Org. Lett. 2004, 6, 3597. (e) Fukuyama, T.;
Tokuyama, H. Aldrichim. Acta 2004, 37, 87. See also footnotes 1a, 2a,
and 3e.
(1) (a) Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122,
11260. (b) Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2001, 3,
91. (c) Liebeskind, L. S.; Srogl, J. Org. Lett. 2002, 4, 979. (d) Savarin,
C.; Liebeskind, L. S. Org. Lett. 2001, 3, 2149. (e) Kusturin, C. L.;
Liebeskind, L. S.; Neumann, W. L. Org. Lett. 2002, 4, 983. (f)
Liebeskind, L. S.; Srogl, J.; Savarin, C.; Polanco, C. Pure Appl. Chem.
2002, 74, 115. (g) Kusturin, C.; Liebeskind, L. S.; Rahman, H.; Sample,
K.; Schweizer, B.; Srogl, J.; Neumann, W. L. Org. Lett. 2003, 5, 4349.
(h) Lengar, A.; Kappe, C. O. Org. Lett. 2004, 6, 771.
(2) (a) Wittenberg, R.; Srogl, J.; Egi, M.; Liebeskind, L. S. Org. Lett.
2003, 5, 3033. (b) Egi, M.; Liebeskind, L. S. Org. Lett. 2003, 5, 801. (c)
Alphonse, F.-A.; Suzenet, F.; Keromnes, A.; Lebret, B.; Guillaumet,
G. Org. Lett. 2003, 5, 803.
(7) (a) Perez, I.; Sestelo, J. P.; Sarandeses, L. A. Org. Lett. 1999, 1,
1267. (b) Perez, I.; Sestelo, J. P.; Sarandeses, L. A. J. Am. Chem. Soc.
2001, 123, 4155. (c) Lee, P. H.; Sung, S.; Lee, K. Org. Lett. 2001, 3,
3201. (d) Lee, K.; Lee, J.; Lee, P. H. J. Org. Chem. 2002, 67, 8265. (e)
Lee, P. H.; Lee, S. W.; Seomoon, D. Org. Lett. 2003, 5, 4963. (f) Takami,
K.; Yorimitsu, H.; Shinokubo, H.; Matsubara, S.; Oshima, K. Org. Lett.
2001, 3, 1997.
(8) Organoindium reagents have been used to make ketones via
carbonylative cross-coupling procedures: (a) Pena, M. A.; Sestelo, J.
P.; Sarandeses, L. A. Synthesis 2003, 5, 780. (b) Lee, P. H.; Lee, S. W.;
Lee, K. Org. Lett. 2003, 5, 1103. (c) Lee, S. W.; Lee, K.; Seomoon, D.;
Kim, S.; Kim, H.; Kim, H.; Shim, E.; Lee, M.; Lee, S.; Kim, M.; Lee, P.
H. J. Org. Chem. 2004, 69, 4852.
(3) Organozinc reagents are also good partners for coupling with
thioorganics under mild reaction conditions: (a) Roberts, W. P.; Ghosh,
I.; Jacobi, P. A. Can. J. Chem. 2004, 82, 279. (b) Ghosh, I.; Jacobi, P.
A. J. Org. Chem. 2002, 67, 9304. (c) Angiolelli, M. E.; Casalnuovo, A.
L.; Selby, T. P. Synlett 2000, (6), 905. (d) Srogl, J.; Liu, W.; Marshall,
D.; Liebeskind, L. S. J. Am. Chem. Soc. 1999, 121, 9449. (e) Tokuyama,
H.; Yokoshima, S.; Yamashita, T.; Fukuyama, T. Tetrahedron Lett.
1998, 39, 3189.
(9) Organoindium reagents were prepared from InCl3 and 3 equiv
of a Grignard reagent in THF at room temperature for 30 min.
(10) InR3 are more reactive than InR2X reagents. Wilkinson, G.;
Stone, F. G. A.; Abel, E. W. Comprehensive Organometallic Chemistry;
Pergamon Press: New York, 1982; Vol. I, p 711.
(11) Of related interest is a nickel-catalyzed coupling of aryl and
alkyl but not alkenyl or alkynyl Grignard reagents: Terao, J.;
Watanabe, H.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc.
2002, 124, 4222.
(4) Yu, Y.; Liebeskind, L. S. J. Org. Chem. 2004, 69, 3554.
10.1021/jo050110u CCC: $30.25 © 2005 American Chemical Society
Published on Web 05/13/2005
J. Org. Chem. 2005, 70, 4851-4853
4851