single-component micellar systems; this is a consequence of
the alcohol acting as a cosurfactant and displacing hydration
water molecules from the microemulsion interface.
Harwell, Marcel Dekker, Inc., New York, 1989, and references
therein.
E. B. Leodidis and T. A. Hatton, J. Phys. Chem., 1990, 94, 6400.
F. Yang and A. J. Russell, Biotechnol. Bioeng., 1994, 43, 232.
(a) M. Hager and K. Holmberg, Chem.–Eur. J., 2004, 10, 5460;
¨
4
5
6
(
2004, 20, 409.
b) N. Ohtani, T. Ohta, Y. Hosoda and T. Yamashita, Langmuir,
Conclusions
7
8
B. H. Robinson, A. N. Khan-Lodhi and T. Towey, in Structure
and Reactivity in Reversed Micelles, ed. M. P. Pileni, Elsevier,
Amsterdam, 1989.
(a) J. H. Fendler and E. J. Fendler, Catalysis in Micellar and
Macromolecular Systems, Academic Press, New York, 1975; (b)
L. S. Romsted, J. Phys. Chem., 1985, 89, 5107; (c) L. S. Romsted,
J. Phys. Chem., 1985, 89, 5113.
C. A. Bunton and L. S. Romsted, in Solution Behavior of
Surfactants: Theoretical and Applied Aspects, ed. K. L.Mittal
and E. J. Fendler, Plenum, New York, 1982, pp. 975.
Using the pseudo-phase formalism to explain the influence of
the composition of the microemulsion on the nucleophilic
attack of bromide ions on benzyl chloride and the acid
denitrosation of N-methyl-N-nitroso-para-toluenesulfonamide
allowed us to
9
(a) Simplify a quaternary microemulsion (TTABr–1-hexa-
nol–isooctane–water or SDS–1-hexanol–isooctane–water) to
one consisting of only three components, namely: an aqueous
phase, an interface formed by the surfactant and 1-hexanol,
and a continuous medium composed of isooctane and
10 (a) H. F. Eicke, Top. Curr. Chem., 1980, 87, 85; (b) P. L. Luisi and
L. J. Magid, CRC Crit. Rev. Biochem., 1986, 20, 409; (c) Y.
Chevalier and T. Zemb, Rep. Prog. Phys., 1990, 53, 279; (d) A.
Goto, H. Yoshioka, M. Manabe and R. Goto, Langmuir, 1995,
1
-hexanol. The incorporation of the alcohol into the interface
11, 4873; (e) T. K. De and A. Maitra, Adv. Colloid Interface Sci.,
1995, 59, 95, and references therein.
increases the interfacial volume, which is now the combination
of those occupied by the surfactant and alcohol.
1
1 (a) P. Ekwall, L. Mandell and K. Fontel, J. Colloid Interface Sci.,
1
969, 29, 639; (b) M. Seno, K. Sawada, K. Araki, K. Iwamoto
(b) Assume the substrate in the nucleophilic attack of
and H. Kise, J. Colloid Interface Sci., 1980, 78, 57; (c) P. D. I.
Fletcher, M. F. Galal and B. H. Robinson, J. Chem. Soc.,
Faraday Trans. 1, 1985, 81, 2053; (d) J. Lang, G. Mascolo, R.
Zana and P. L. Luisi, J. Phys. Chem., 1990, 94, 3069; (e) R.
Germani, G. Savelli, G. Cerichelli, G. Mancini, L. Luchetti, P. P.
Ponti, N. Spreti and C. A. Bunton, J. Colloid Interface Sci., 1991,
147, 152.
bromide ion to benzyl chloride to partition solely between
the continuous medium and the interface, and hence that the
reaction takes place at the microemulsion interface only. The
pseudo-phase formalism allowed us to determine the partition
constant of the substrate between the continuous medium and
1
2 (a) P. D. Profio, R. Germani, G. Onori, A. Santucci, G. Savelli
and C. A. Bunton, Langmuir, 1998, 14, 768; (b) J. Sunamoto, K.
Iwamoto, S. Nagamatsu and H. Kondo, Bull. Chem. Soc. Jpn.,
1983, 56, 2469; (c) H. Kondo, I. Miwa and J. Sunamoto, J. Phys.
Chem., 1982, 86, 4826.
3 (a) R. Germani, P. P. Ponti, N. Spreti, G. Savelli, A. Cipiciani, G.
Cerichelli, C. A. Bunton and V. Si, J. Colloid Interface Sci., 1990,
138, 443; (b) R. Germani, P. P. Ponti, T. Romeo, G. Savelli, N.
Spreti, G. Cerichelli, L. Luchetti, G. Mancini and C. A. Bunton,
the interface, as well as the product of the rate constant and
i
the charge fraction neutralized at the interface (bk
ꢀ
=
Br
ꢀ
6
ꢀ1 ꢀ1
i
ꢀ is independent of
3
.22 ꢂ10
M
s
). The fact that bkBr
W suggests that the degree of dissociation of the surfactant at
the microemulsion interface is independent of the water con-
tent of the microemulsion.
1
(c) Obtain similar results for the acid denitrosation of
J. Phys. Org. Chem., 1989, 2, 553.
14 (a) R. Zana, Adv. Colloid Interface Sci., 1995, 57, 1; (b) J. Van
Nieuwkoop and G. Snoei, J. Colloid Interface Sci., 1985, 103, 417.
MNTS in SDS–1-hexanol–isooctane–water microemulsions.
+
H
+
On the assumption that kNa D 1 for the Na /H ion-
i
H
i
H
exchange equilibrium, an average k
ꢀ
b value of k
b = 5.8 ꢂ
1
5 A. Jain and R. P. B. Singh, J. Colloid Interface Sci., 1981, 81, 536.
4
ꢀ1 ꢀ1
1
0
M s
was obtained over the range 7 o W o 25. This
result confirms that the fraction of neutralized charge at the
16 R. Zana, S. Yiv, C. Strazielle and P. Lianos, J. Colloid Interface
Sci., 1981, 80, 208.
17 P. Mukerjee, J. Phys. Chem., 1962, 66, 1733.
18 M. Dollet, J. Juillard and R. Zana, J. Solution Chem., 1980, 9,
interface is independent of the water content of the micro-
i
emulsion. Under the assumption that b = 0.8, a kH value was
obtained by analogy with micellar systems that is roughly 45
times smaller than in pure water; this is consistent with other
results for nitroso group transfers in microemulsions.
827.
19 G. Palazzo, F. Lopez, M. Giustini, G. Colafemmina and A.
Ceglie, J. Phys. Chem. B, 2003, 107, 1924.
0 J. E. Bowcott and J. H. Schulman, Z. Elektrochem., 1955, 59, 283.
1 (a) W. Gerbacia and H. L. Rosano, J. Colloid Interface Sci., 1973,
2
2
4
4, 242; (b) V. K. Bansal, D. O. Shah and J. P. O’Conel, J. Colloid
Interface Sci., 1980, 75, 462; (c) K. S. Birdi, Colloid Polym. Sci.,
1982, 26, 628; (d) H. N. Singh, S. Swarup, R. P. Singh and S. M.
Saleem, Ber. Bunsen-Ges. Phys. Chem., 1983, 87, 1115; (e) S. P.
Moulik, L. G. Digout, W. M. Aylward and R. Palepu, Langmuir,
Acknowledgements
Financial support from Spain’s Ministerio de Ciencia y Tec-
´
a (Project CTQ2005-04779) and Xunta de Galicia
2
1
2
000, 16, 3101; (f) S. K. Hait and S. P. Moulik, Langmuir, 2002,
8, 6736; (g) M. Giustini, S. Murgia and G. Palazzo, Langmuir,
004, 20, 7381.
nologı
(
PGIDT03-PXIC20905PN and PGIDT04TMT209003PR) is
gratefully acknowledged.
22 P. Stilbs, J. Colloid Interface Sci., 1982, 87, 385.
2
3 L. Garcı
01, 5514.
4 C. Bravo, J. R. Leis and M. E. Pen
957.
´
a-Rio, J. R. Leis and C. Reigosa, J. Phys. Chem. B, 1997,
1
2
˜
a, J. Phys. Chem., 1992, 96,
References
1
1
(a) J. K. Thomas, Chem. Rev., 1980, 80, 283; (b) M. A. Lo
Quintela, C. Tojo, M. C. Blanco, L. Garcıa-Rıo and J. R. Leis,
Curr. Opin. Colloid Interface Sci., 2004, 9, 264.
´
pez-
25 (a) A. K. Yatsimirski, K. Martinek and I. V. Berezin, Tetrahe-
dron, 1971, 27, 2855; (b) S. Backlund, B. Bergenstahl, O. Mo-
lander and T. Warnheim, J. Colloid Interface Sci., 1989, 131, 393;
(c) E. Kudryashov, T. Kapustina, S. Morrissey, V. Buckin and K.
´
´
2
3
P. Neogi, in Microemulsions: Structure and Dynamics, ed. S. E.
Friberg and P. Bothorel, CRC Press, Boca Raton, FL, 1987.
(a) P. L. Luisi, M. Giomini, M. P. Pileni and B. H. Robinson,
Biochim. Biophys. Acta, 1988, 947, 209; (b) T. A. Hatton, in
Surfactant Based Processes, ed. J. F. Scamehorn and J. H.
Dawson, J. Colloid Interface Sci., 1998, 203, 59; (d) G. Gonzalez-
´
Gaitano, A. Crespo and G. Tardajos, J. Phys. Chem. B, 2000,
104, 1869; (e) A. Lainez, P. Burgo, E. Junquera and E. Aicart,
Langmuir, 2004, 20, 5745.
This journal is ꢁc the Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2007
New J. Chem., 2007, 31, 860–870 | 869