G. Keglevich et al. / Journal of Organometallic Chemistry 696 (2011) 3557e3563
3563
[6] G. Keglevich, in: O.A. Attanasi, D. Spinelli (Eds.), Targets in Heterocyclic
Systems, vol. 6, Italian Society of Chemistry, 2002, p. 245.
The optically active cis-[bis(1-propyl-3-methylphospholano)-
dichloro-platinum(II)] ((RPRC,RPRC)-, (RPSC,RPRC) and (RPSC,RPSC)-8)
was prepared analogously from the 1:1 mixture of 1-propyl-3-
methylphospholanes ((SP,RC)-6, (SP,SC)-6). Yield: 22% as a 23*:45:32*
mixture of the (RPRC,RPRC)-8*:(RPSC,RPRC)-8:(RPSC,RPSC)-8* isomers,
}
[7] Z. Csók, G. Keglevich, G. Petocz, L. Kollár, Inorg. Chem. 38 (1999) 831.
}
[8] Z. Csók, G. Keglevich, G. Petocz, L. Kollár, J. Organomet. Chem. 586 (1999) 79.
[9] A. Kerényi, V. Kovács, T. Körtvélyesi, K. Ludányi, L. Drahos, G. Keglevich,
Heteroatom Chem. 21 (2010) 63.
[10] R.A. Baber, M.F. Haddow, A.J. Middleton, A.G. Orpen, P.G. Pringle, Organo-
metallics 26 (2007) 713.
[11] M. Carreira, M. Charemsuk, M. Eberhard, N. Fey, R. van Ginkel, A. Hamilton,
W.P. Mul, A.G. Orpen, H. Phetmung, P.G. Pringle, J. Am. Chem. Soc. 131 (2009)
3078.
[12] J.H. Downing, J. Floure, K. Heslop, M.F. Haddow, J. Hopewell, M. Luisi,
H. Phetmung, A.G. Orpen, P.G. Pringle, R.I. Pugh, D. Zambrano-Williams,
Organometallics 27 (2008) 3216.
*may be reversed; ½a 2D5
ꢂ
¼ ꢁ17:3 (c ¼ 0,1, CHCl3); 31P NMR (CDCl3)
d
18.34 (1JPteP ¼ 3445, 23%) for (RPRC,RPRC)-8*, 17.69 (1JPteP ¼ 3448,
2JPeP ¼ 17), 18.17 (1JPteP ¼ 3443, JPeP ¼ 17, 45%) for (RPSC,RPRC)-8,
2
17.81 (1JPt,P ¼ 3447, 32%) for (RPSC,RPSC)-8*, *may be reversed,13C NMR
3
0
0
(CDCl3)
d
15.6 (3JPeC ¼ 15.8, C3 ),19.3 ( JPteC ¼ 24.9, C2 ), 20.1e20.5 (m,
C3-CH3); FAB-MS, [M ꢁ Cl]þ
¼ 517.1458, C16H34P2ClPt requires
found
[13] T.P. Clark, C.R. Landis, Tetrahedron: Asymmetry 15 (2004) 2123.
[14] Q. Jiang, Y. Jiang, D. Xiao, P. Cao, X. Zhang, Angew. Chem. Int. Ed. 37 (1998)
1100.
517.1451 for the 35Cl and the 194Pt isotopes.
[15] F. Robin, F. Mercier, L. Ricard, F. Mathey, M. Spagnol, Chem. A Eur. J. 3 (1997)
1365.
3.2. Hydroformylation experiments
[16] C. Scriban, D.S. Glueck, J.A. Golen, A.L. Rheingold, Organometallics 26 (2007)
1788.
[17] B.J. Anderson, D.S. Glueck, A.G. DiPasquale, A. Rheingold, Organometallics 27
(2008) 4992.
A solution of 0.01 mmol of PtCl2(ligand)2 and 3.8 mg (0.02 mmol)
of tin(II) chloride in 10 mL of toluene containing 0.115 mL (1 mmol)
of styrene was transferred under argon into a 100 mL stainless steel
autoclave. The reaction vessel was pressurized to 80 bar total pres-
sure (CO/H2 ¼1/1) and placed in an oil bath of appropriate
temperature and the mixture was stirred with a magnetic stirrer.
Samples were taken from the mixture and the pressure was moni-
tored throughout the reaction. After cooling and venting of the
autoclave, the pale yellow solution was removed and immediately
analyzed by GC and chiral GC (on a capillary Cyclodex-column, (S)-2-
phenylpropanal was eluted before the (R) enantiomer).
[18] B.J. Anderson, M.A. Guino-o, D.S. Glueck, J.A. Golen, A.G. DiPasquale,
L.M. Liable-Sands, A.L. Rheingold, Org. Lett. 10 (2008) 4425.
}
[19] G. Keglevich, M. Sipos, D. Szieberth, L. Nyulászi, T. Imre, K. Ludányi, L. Toke,
Tetrahedron 60 (2004) 6619.
[20] G. Keglevich, M. Sipos, T. Körtvélyesi, T. Imre, L. Toke, Tetrahedron Lett 46
}
(2005) 1655.
}
[21] G. Keglevich, M. Sipos, D. Szieberth, G. Petocz, L. Kollár, J. Organomet. Chem.
689 (2004) 3158.
[22] G. Keglevich, M. Sipos, V. Ujj, T. Körtvélyesi, Lett. Org. Chem. 2 (2005) 608.
[23] G. Keglevich, H. Szelke, A. Kerényi, T. Imre, K. Ludányi, J. Dukai, F. Nagy,
P. Arányi, Heteroatom Chem. 15 (2004) 459.
[24] G. Keglevich, H. Szelke, A. Kerényi, V. Kudar, M. Hanusz, K. Simon, T. Imre,
K. Ludányi, Tetrahedron: Asymmetry 16 (2005) 4015.
[25] G. Keglevich, A. Kerényi, B. Mayer, T. Körtvélyesi, K. Ludányi, Transit. Metal.
Chem. 33 (2008) 505.
3.3. Theoretical calculations
[26] G. Keglevich, H. Szelke, A. Kerényi, T. Imre, Transit. Metal. Chem. 31 (2006) 306.
[27] G. Keglevich, A. Kerényi, H. Szelke, K. Ludányi, T. Körtvélyesi, J. Organomet.
Chem. 691 (2006) 5038.
[28] A. Kerényi, A. Balassa, T. Körtvélyesi, K. Ludányi, G. Keglevich, Transit. Metal.
Chem. 33 (2008) 459.
[29] T. Novák, J. Schindler, V. Ujj, M. Czugler, E. Fogassy, G. Keglevich, Tetrahedron:
Asymmetry 17 (2006) 2599.
[30] T. Novák, V. Ujj, J. Schindler, M. Czugler, M. Kubinyi, Z.A. Mayer, E. Fogassy,
G. Keglevich, Tetrahedron: Asymmetry 18 (2007) 2965.
[31] V. Ujj, J. Schindler, T. Novák, M. Czugler, E. Fogassy, G. Keglevich, Tetrahedron:
Asymmetry 19 (2008) 1973.
The structures for the conformational analysis of the cis struc-
tures were built up by PCMODEL [37]. The calculations were per-
formed in gas phase by Gaussian ’03 [38]. A mixed basis set was
used with B3LYP hybrid density functional: 6-31G** for H, C, P, Cl
atoms and LANL2DZ effective core potential for Pt atom. Only
positive normal mode frequencies were obtained for the accepted
geometries.
[32] V. Ujj, P. Bagi, J. Schindler, J. Madarász, E. Fogassy, G. Keglevich, Chirality
(2010) 699.
[33] G. Keglevich, I. Petneházy, P. Miklós, A. Almásy, G. Tóth, L. Toke, L.D. Quin,
Acknowledgments
}
J. Org. Chem. 52 (1987) 3983.
[34] G. Keglevich, K. Újszászy, Á. Szöllosy, K. Ludányi, L. Toke, J. Organomet. Chem.
516 (1996) 139.
[35] Y. Gourdel, A. Ghanimi, P. Pellon, M. Le Corre, Tetrahedron Lett. 34 (1993)
1011.
[36] P. Pongrácz, L. Kollár, A. Kerényi, V. Kovács, V. Ujj, G. Keglevich, J. Organomet.
Chem. 696 (2011) 2234.
[37] K.E. Gilbert, PCMODEL, Version 7.0, Serena Software, Bloomington, IN, USA.
[38] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb,
J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant,
J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,
G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara,
K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo,
J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi,
C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador,
J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain,
O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz,
Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko,
P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng,
A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen,
M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision B.05. Gaussian, Inc.,
Pittsburgh PA, 2003.
The above project was supported by the Hungarian Scientific
and Research Fund (OTKA K83118 and CK78553). This work is also
connected to the scientific program of the “Development of quality-
oriented and harmonized R þ D þ I strategy and functional model at
BME” project. This project is supported by the New Hungary
Development Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-
0002). T.K. is grateful for the Hungarian Supercomputer Center, NIIF
and HPC Szeged, for the computational facility.
}
}
References
[1] H. Brunner, W. Zettlmeier, Handbook of Enantioselective Catalysis With
Transition Metal Compounds. VCH, Weinheim, 1993.
[2] C. Botteghi, M. Marchetti, S. Paganelli, in: M. Beller, C. Bolm (Eds.), Transition
Metals for Organic Synthesis, vol. 2, Wiley-VCH, Weinheim, 1998, p. 25.
[3] F. Mathey, in: F. Mathey (Ed.), PhosphoruseCarbon Heterocyclic Chemistry:
The Rise of a New Domain, Pergamon, Amsterdam, 2001.
[4] L. Kollár, G. Keglevich, Chem. Rev. 110 (2010) 4257.
[5] G. Keglevich, L. Kollár, Lett. Org. Chem. 7 (2010) 612.