100 Bagi et al.
[3] Noyori, R. Asymmetric Catalysis in Organic Synthe-
sis; Wiley: New York, 1994.
[4] Kollár, L.; Keglevich, G. Chem Rev 2010, 110, 4257–
were performed invoking the polarized continuum
model [46] with acetonitrile as the solvent since the
latter was employed in the experiments. The dRPA
energies were evaluated with the aug-cc-pVTZ basis
set using PBE0 Kohn-Sham orbitals. Temperature
corrections, entropy contributions, and Gibbs
energies of solvation evaluated at the DFT level with
the above functional and basis set were added to
the gas-phase dRPA energies to obtain 298 K Gibbs
energies of the conformers in the solvent. For all the
three conformers, the absorption (CD) spectra were
simulated as superpositions of Gaussian functions
placed at the wavelengths of the computed
transitions with heights proportional to the
corresponding computed oscillator (rotator)
strengths. To obtain the final theoretical spectra, the
spectra of the individual conformers were weighted
using the Boltzmann factors calculated from the
conformational energies. The averaged curves were
normalized so that the height of the dominant
band will be identical to that of the experimental
spectra, and the spectra were shifted by –2 nm so
that the most intense band in the theoretical and
experimental absorption spectra will appear at the
same wavelength (191 nm).
4302.
[5] Grabulosa, A.; Granell, J.; Muller, G. Coord Chem
Rev 2007, 251, 25–90.
[6] Grabulosa, A. P-Stereogenic Ligands in Enantiose-
lective Catalysis; The Royal Society of Chemistry:
Cambridge, UK, 2010.
[7] Botteghi, C.; Paganelli, S.; Schionato, A.; Marchetti,
M. Chirality 1991, 3, 355–369.
[8] Franke, R.; Selent, D.; Bo¨rner, A. Chem Rev 2012,
112, 5675–5732.
[9] Cso´k, Z.; Keglevich, G.; Peto˝cz, G.; Kolla´r, L. J
Organomet Chem 1999, 586, 79–84.
[10] Keglevich, G.; Kegl, T.; Chuluunbaatar, T.; Dajka, B.;
Matyus, P.; Balogh, B.; Kollar, L. J Mol Catal A 2003,
200, 131–136.
[11] Axtell, A. T.; Cobley, C. J.; Klosin, J.; Whiteker, G. T.;
Zanotti-Gerosa, A.; Abboud, K. A. Angew Chem, Int
Ed 2005, 44, 5834–5838.
[12] Axtell, A. T.; Klosin, J.; Abboud, K. A. Orga-
nometallics 2006, 25, 5003–5009.
[13] Klosin, J.; Landis, C. R. Acc Chem Res 2007, 40, 1251–
1259.
[14] Frison, G.; Brebion, F.; Dupont, R.; Mercier, F.;
Ricard, L.; Mathey, F. C R Chimie 2002, 5, 245–249.
[15] Robe´, E.; Hegedu¨s, C.; Bakos, J.; Coppel, Y.; Daran,
J.-C.; Gouygou, M. Inorg Chim Acta 2008, 361, 1861–
1867.
[16] Kere´nyi, A.; Kova´cs, V.; Ko¨rtve´lyesi, T.; Luda´nyi, K.;
Drahos, L.; Keglevich, G. Heteroatom Chem 2010, 21,
63–70.
Geometries were computed at the RI-B97-D/6-
31G(d) level of theory [47–50], then single point
energy calculations were performed at the optima
using ωB97X-D/cc-pVTZ level [51,52]. For Pt atoms,
cc-pVTZ-PP pseudopotential [53] was applied for
both geometry optimization and single point
energy calculations. Minima on the potential energy
surface were characterized by harmonic vibrational
frequency calculations. Calculations were carried
out using Gaussian09 [39] program. Avogadro was
utilized for visualization [54].
[17] Pongra´cz, P.; Kolla´r, L.; Kere´nyi, A.; Kova´cs, V.; Ujj,
V.; Keglevich, G. J Organomet Chem 2011, 696, 2234–
2237.
´
[18] Keglevich, G.; Bagi, P.; Szo¨llo˝sy, A; Ko¨rtve´lyesi, T.;
Pongra´cz, P.; Kolla´r, L.; Drahos, L. J Organomet
Chem 2011, 696, 3557–3563.
[19] Bagi, P.; Kova´cs, T.; Szilva´si, T.; Pongra´cz, P.;
Kolla´r, L.; Drahos, L.; Fogassy, E.; Keglevich, G. J
Organomet Chem 2014, 751, 306–313.
[20] Bagi, P.; Szilva´si, T.; Pongra´cz, P.; Kolla´r, L.;
Drahos, L.; Keglevich, G. Curr Org Chem 2014, 18,
1529–1538.
[21] Nova´k, T.; Ujj, V.; Schindler, J.; Czugler, M.; Ku-
binyi, M.; Mayer, Z. A.; Fogassy, E.; Keglevich, G.
Tetrahedron: Asymmetry 2007, 18, 2965–2972.
[22] Ujj, V.; Bagi, P.; Schindler, J.; Madara´sz, J.; Fogassy,
E.; Keglevich, G. Chirality 2010, 22, 699–705.
[23] Bagi, P.; Fekete, A.; Ka´llay, M.; Hessz, D.; Ku-
binyi, M.; Holczbauer, T.; Czugler, M.; Fogassy, E.;
Keglevich, G. Chirality 2014, 26, 174–182.
[24] Bagi, P.; Fekete, A.; Ka´llay, M.; Hessz, D.; Ku-
binyi, M.; Holczbauer, T.; Czugler, M.; Fogassy, E.;
Keglevich, G. Heteroatom Chem 2015, 26, 79–90.
[25] Ujj, V.; Kere´nyi, A.; Laki, A.; Fogassy, E.; Keglevich,
G. Lett Org Chem 2010, 7, 110–113.
ACKNOWLEDGMENTS
The authors are thankful to Hungarian Research
Fund for the financial support (Grant No. PD116096,
K83118, K115421, K108752, K104769, K113177,
and K105459 (K.E.K.)). Financial support from
Richter Gedeon Talentum Alap´ıtva´ny (Ph.D. schol-
arship to I.T.) is gratefully acknowledged. T.S. is
grateful for the support of The New Sze´chenyi Plan
TAMOP-4.2.2/B-10/1-2010-0009.
[26] Bagi, P.; Laki, A.; Keglevich, G. Heteroatom Chem
2013, 24, 179–186.
REFERENCES
[27] Pietrusiewicz, K. M.; Flis, A.; Ujj, V.; Ko¨rtve´lyesi, T.;
Drahos, L.; Pongra´cz, P.; Kolla´r, L.; Keglevich, G.
Heteroatom Chem 2011, 22, 730–736.
[28] Keglevich, G.; Sipos, M.; Ujj, V.; Ko¨tve´lyesi, T. Lett
Org Chem 2005, 2, 608–612.
[1] Brunner, H.; Zettlmeier, W. Handbook of Enantiose-
lective Catalysis with Transition Metal Compounds;
VCH: Weinheim, 1993.
[2] Botteghi, C.; Marchetti, M.; Paganelli, S. (Eds.).
Transition Metals for Organic Synthesis; Wiley-VCH:
Weinheim, 1998.
[29] Allen, F. H. Acta Cryst B 2002, 58, 380–388.
Heteroatom Chemistry DOI 10.1002/hc