Letter
NJC
the reaction)19 leading to the regeneration of the catalytically
active cobalt(0) species Co(PMe3)3 (A0).18
D. Alonso-Dıaz and H. Waldmann, Angew. Chem., Int. Ed.,
1998, 37, 688–749; (c) J. D. Klemm, S. L. Schreiber and
G. R. Crabtree, Annu. Rev. Immunol., 1998, 16, 569–592;
(d) C.-H. Heldin, Cell, 1995, 80, 213–224. For a review on
molecules that promote the dimerization of proteins see:
(e) P. A. Clemons, Curr. Opin. Chem. Biol., 1999, 3, 112–115.
4 (a) A. C. Frisch and M. Beller, Angew. Chem., Int. Ed., 2005,
44, 674–688; (b) B. L. H. Taylor and E. R. Jarvo, Synthesis,
2011, 2761–2765; (c) R. Jana, T. P. Pathak and M. S. Sigman,
Chem. Rev., 2011, 111, 1417–1492; (d) A. Rudolph and
M. Lautens, Angew. Chem., Int. Ed., 2009, 48, 2656–2670.
5 (a) I. Hashimoto, N. Tsuruta, M. Ryang and S. J. Tsutsumi, J. Org.
Chem., 1970, 35, 3748–3752; (b) S.-I. Inaba, H. Matsumoto and
R. D. J. Rieke, J. Org. Chem., 1984, 49, 2093–2098; (c) M. R.
Prinsell, D. A. Everson and D. J. Weix, Chem. Commun., 2010, 46,
5743–5745; (d) C. D. Mboyi, S. Gaillard, M. D. Mabaye,
N. Pannetier and J.-L. Renaud, Tetrahedron, 2013, 69,
4875–4882; (e) M. Iyoda, M. Sakaitani, H. Otsuka and M. Oda,
Chem. Lett., 1985, 127–130; ( f ) T. Chen, L. Yang, L. Li and
K.-W. Huang, Tetrahedron, 2012, 68, 6152–6157.
In summary, to the best of our knowledge we disclose the
first catalytic version of a cobalt-catalysed reductive homocoupling of
benzyl halides. Chemical susceptible motifs such as bromo-, chloro-,
iodo- and nitro-substituted benzyl halides were all smoothly
converted under our reaction conditions. In addition the use
of well-defined low valent cobalt complexes has allowed us to
gain a greater mechanistic insight than previously reported. We
also report a novel approach to the regeneration of the cobalt(0)
species through a combination with Me2Zn.
Experimental
Commercial reagents were used without any purification.
Tetrahydrofuran was purified by mean of distillation under dry
nitrogen atmosphere on benzophenone/sodium and degassed
by freeze–pump–thaw technique.
General procedure for the cobalt catalyzed homocoupling of
benzyl halides
6 K. Sato, Y. Inoue, T. Mori, A. Sakaue, A. Tarui, M. Omote,
I. Kumadaki and A. Ando, Org. Lett., 2014, 16, 3756–3759.
7 (a) A. Lei and X. Zhang, Org. Lett., 2002, 4, 2285–2288;
To a solution of Co(PMe3)4 (0.5–5 mol%) in degassed THF
(0.5 mL) was added Me2Zn, 1.0 M in hexane (0.3 mL, 0.3 mmol)
followed by benzyl halide 1 (0.5 mmol) at ambient temperature.
The reaction was then transferred to an oil bath and heated to
66 1C for between 10–60 min. The resulting mixture was
quenched with 10% HCl, and extracted with AcOEt. The AcOEt
layer was washed with brine and dried over MgSO4. The solvent
was removed in vacuo and the residue was purified by column
chromatography on silica to give the desired product.
´
(b) B. Liegault, J.-L. Renaud and C. Bruneau, Chem. Soc.
Rev., 2008, 37, 290–299.
8 (a) S.-Y. Chen, J. Zhang, Y.-H. Li, J. Wen, S.-Q. Bian and X.-Q. Yu,
Tetrahedron Lett., 2009, 50, 6795–6797; (b) M. Mayer,
W. Maximilian and A. J. von Wangelin, Synlett, 2009, 2919–2923.
9 (a) Y. Yamada and D.-I. Momose, Chem. Lett., 1981, 1277–1281;
(b) D.-I. Momose, K. Iguchi, T. Sugiyama and Y. Yamada,
Tetrahedron Lett., 1983, 24, 921–924; (c) S. Goswami and
A. K. Mahapatra, Tetrahedron Lett., 1998, 39, 1981–1984;
(d) S. Goswami, A. K. Mahapatra and R. J. Mukherjee,
J. Chem. Soc., Perkin Trans. 1, 2001, 2717–2726; (e) N. Oka,
Y. S. Sanghvi and E. A. Theodorakis, Synlett, 2004, 823–826.
10 The use of zinc metal to generate ClCo(PPh3)3 from Cl2Co(PPh3)2
is known see: S. L. Baysdon and L. S. Liebeskind, Organometallics,
1982, 1, 771–775. However, we did not consider this approach in
order to avoid benzylzinc halide formation by zinc insertion.
11 (a) S. Ventre, E. Derat, M. Amatore, C. Aubert and M. Petit,
Adv. Synth. Catal., 2013, 355, 2584–2590; (b) B. J. Fallon,
E. Derat, M. Amatore, C. Aubert, F. Chemla, F. Ferreira,
A. Perez-Luna and M. Petit, J. Am. Chem. Soc., 2015, 137,
2448–2451; (c) B. J. Fallon, J. B. Garsi, E. Derat, M. Amatore,
C. Aubert and M. Petit, ACS Catal., 2015, 5, 7493–7497;
(d) B. J. Fallon, E. Derat, M. Amatore, C. Aubert, F. Chemla,
F. Ferreira, A. Perez-Luna and M. Petit, Org. Lett., 2016, 18,
Acknowledgements
This work was supported by CNRS, MRES, UPMC and ANR
(ANR-12-BS07-0031-01COCACOLIGHT), which we gratefully
acknowledge.
Notes and references
1 (a) D. J. Weix, Acc. Chem. Res., 2015, 48, 1767–1775; (b) D. A.
Everson and D. J. Weix, J. Org. Chem., 2014, 79, 4793–4798;
(c) C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot
and V. Snieckus, Angew. Chem., Int. Ed., 2012, 51, 5062–5085;
(d) A. D. Meijere and F. Diederich, Metal-Catalyzed Cross-
Coupling Reactions, Wiley-VCH, Weinheim, 2nd edn, 2004,
pp. 1–938.
´
2292–2295; (e) A. Rivera-Hernandez, B. J. Fallon, S. Ventre,
2 (a) E. Iwasa, Y. Hamashima, S. Fujishiro, D. Hashizume and
M. Sodeoka, Tetrahedron, 2011, 67, 6587–6599; (b) T. N. Barrett,
D. C. Braddock, A. Monta, M. R. Webb and A. J. P. White, J. Nat.
Prod., 2011, 74, 1980–1984; (c) X.-J. Duan, X.-M. Li and B.-G.
Wang, J. Nat. Prod., 2007, 70, 1210–1213.
3 For a review of polyvalent interactions in biology see:
(a) M. Mammen, S.-K. Choi and G. M. Whitesides, Angew.
Chem., Int. Ed., 1998, 37, 2754–2794. For the importance
of dimers in signal transduction see: (b) K. Hinterding,
C. Simon, M.-H. Tremblay, G. Gontard, E. Derat, M. Amatore,
C. Aubert and M. Petit, Org. Lett., 2016, 18, 4242–4245.
12 (a) S. Pal, S. Chowdhury, E. Rozwadowski, A. Auffrant and
C. Gosmini, Adv. Synth. Catal., 2016, 358, 2431–2435; (b) Y. Cai,
X. Qian and C. Gosmini, Adv. Synth. Catal., 2016, 358,
2427–2430; (c) Y. Suh, J.-S. Lee, S.-H. Kim and R. D. Rieke,
J. Organomet. Chem., 2003, 684, 20–36; (d) W. S. Lindsay,
P. Stokes, L. G. Humber and V. Boekelheide, J. Am. Chem. Soc.,
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016