206
NINDAKOVA et al.
12. Wu, B. and Zheng, N., Nano Today, 2013, vol. 8, no. 2,
3 deg/min, gas flow rate 1.5 mL/min, thermostat tem-
perature 115°С.
p. 168. doi 10.1016/j.nantod.2013.02.006
13. Watt, J., Cheong, S., and Tilley, R.D., Nano Today,
2013, vol. 8, no. 2, p. 198. doi 10.1016/
j.nantod.2013.03.001
14. Semagina, N., Renken, A., and Kiwi-Minsker, L.,
J. Phys. Chem. (C), 2007, vol. 111, no. 37, p. 13933. doi
10.1021/jp073944k
15. Semagina, N., Renken, A., Laub, D., and Kiwi-Minsker, L.,
J. Catalysis, 2007, vol. 246, no. 2, p. 308. doi 10.1016/
j.jcat.2006.12.011
16. Yasukawa, T., Miyamura, H., and Kobayashi, S., ACS
Catal., 2016, vol. 6, no. 11, p. 7979. doi 10.1021/
acscatal.6b02446
17. Yasukawa, T., Suzuki, A., Miyamura, H., Nishino, K.,
and Kobayashi, S., J. Am. Chem. Soc., 2015, vol. 137,
no. 20, p. 6616. doi 10.1021/jacs.5b02213
18. Bartók, M., Felföldi, K., Szöllösi, G., and Bartók, T.,
Catal. Lett., 1999, vol. 61, no. 1, p. 1. doi 10.1023/
A:1019008519015
Hydrogenation procedure. Hydrogenation reaction
was performed in a Picoclave GlassUster cyclone 075
BUCHI autoclave. A solution of the precursor and the
modifier: 0.0304 g (1×10–4 mol) of palladium
acetylacetonate, ~10–4 mol of the modifier, 3 mL of
toluene, and 19 mL of methanol was transferred to a
100 mL vessel being bubbled with hydrogen. The pale-
yellow solution was stirred under hydrogen pressure of
5 atm during 30 min, then 0.5 mL of the substrate in
8 mL of methanol was added, and the “zero sample”
was withdrawn. The mixture of hydrogenation
products was then analyzed each 30 or 60 min using
the chromato–mass spectrometer. Configuration of the
prevailing enantiomer was determined by comparison
with the reference data [43].
REFERENCES
19. Baiker, A., J. Mol. Cat. (A), 2000, vol. 163, nos. 1–2,
p. 205. doi 10.1023/A:1019008519015
1. Bukhtiyarov, V.I. and Slin’ko, M.G., Russ. Chem. Rev.,
2001, vol. 70, no. 2, p. 147. doi 10.1070/
RC2001v070n02ABEH000637
2. Borah, B.J., Saikia, K., Saikia, P.P., Barua, N.Ch., and
Dutta, D.K., Catalysis Today, 2012, vol. 198, no. 1,
p. 174. doi 10.1016/j.cattod.2012.03.083
3. Dinç, M., Metina Ö., and Özkar, S., Catalysis Today,
2012, vol. 183, no. 1, p. 10. doi 10.1016/
j.cattod.2011.05.007
20. Murzin, D.Yu. and Toukoniitty, E., React. Kinet. Catal.
Lett., 2007, vol. 90, no. 1, p. 19. doi 10.1007/s11144-
007-5004-9
21. Szöllösi, G., Hermán, B., Fülöp, F., and Bartók, M.,
React. Kinet. Catal. Lett., 2006, vol. 88, no. 2, p. 391.
doi 10.1007/s11144-006-0076-5
22. Burgi, T. and Baiker, A., Acc. Chem. Res., 2004,
vol. 37, no. 11, p. 909. doi 10.1021/ar040072l.
23. Margitfalvi, J.L. and Tfirst, E., J. Mol. Cat. (A), 1999,
vol. 139, no. 1, p. 81. doi 10.1016/S1381-1169(98)
00197-6
4. Zhu, C., Zeng, J., Lu, P., Liu, J., Gu, Zh., and Xia, Y.,
Chem. Eur. J., 2013, vol. 19, no. 16, p. 5127. doi
10.1002/chem.201203787
24. Bartók, M., Balázsik, K., and Notheisz, F., React. Kinet.
Catal. Lett., 2002, vol. 77, no. 2, p. 363. doi 10.1023/
A:1020852405963
5. Zhang, H., Jin, M., Xiong, Y., Lim, B., and Xia, Y.,
Acc. Chem. Res., 2013, vol. 46, no. 8, p. 1783. doi
10.1021/ar300209w
25. Yasukawa, T., Suzuki, A., Miyamura, H., Nishino, K.,
and Kobayashi, S., J. Am. Chem. Soc., 2015, vol. 137,
no. 20, p. 6616. doi 10.1021/jacs.5b02213
6. Ramsurn, H and, Gupta, R.B., in New and Future
Developments in Catalysis. Catalysis by Nanoparticles,
Suib, S.L., Ed., Amsterdam; Boston; Heidelberg:
Elsevier, 2013, ch. 15, p. 347.
26. Bonnemann, H. and Braun, G.A., Chem. Eur. J., 1997,
7. Mallick, K., Witcomb, M., J., Dinsmore, A., and
Scurrell, M.S., J. Mater. Sci., 2006, vol. 41, no. 6,
p. 1733. doi 10.1007/s10853-006-3950-7
8. Pushkarev, V.V., Zhu, Z., An, K., Hervier, A., and
Somorjai, G.A., Top Catal., 2012, vol. 55, nos. 19–20,
p. 1257. doi 10.1007/s11244-012-9915-y
vol. 3, no. 8, p. 1200. doi 10.1002/chem.19970030805
27. Studer, M., Blaser, H.-U., and Exner, C., Adv. Synth.
Catal., 2003, vol. 345, no. 1–2, p. 45. doi 10.1002/
adsc.200390029
28. Mink, L., Ma Zh., Olsen, R.A., James, J.N., Sholl, D.S.,
Mueller, L.J., and Zaera, F., Top Catal., 2008, vol. 48,
nos. 1–4, p. 120. doi 10.1007/s11244-008-9041-z
9. Roy, S. and Perics, M.A., Org. Biomol. Chem., 2009,
vol. 7, no. 13, p. 2669. doi 10.1039/b903921j
10. Barbaro, P., Santo, V.D., and Liguori, F., Dalton Trans.,
29. Hisaki, I., Hiraishi, E., Sasaki, T., Orita, H., Tsuzuki, S.,
Tohnai, N., and Miyata, M., Chem. Asian J., 2012,
vol. 7, no. 11, p. 2607. doi 10.1002/asia.201200566
2010, vol. 39, no. 36, p. 8391. doi 10.1039/c002051f
30. Kubota, J. and Zaera, F., J. Am. Chem. Soc., 2001,
11. Harris, K.D.M. and Thomas, J.M., ChemCatChem.,
vol. 123, no. 44, p. 11115. doi 10.1021/ja016722n
2009, vol. 1, no. 2, p. 223. doi 10.1002/cctc.200900181
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 88 No. 2 2018