10.1002/cplu.201700547
ChemPlusChem
COMMUNICATION
o
[3]
a) C. P. Xu, R. A. D. Arancon, J. Labidi, R. Luque, Chem. Soc. Rev.
2014, 43, 7485-7500; b) A. J. Ragauskas, G. T. Beckham, M. J. Biddy,
R. Chandra, F. Chen, M. F. Davis, B. H. Davison, R. A. Dixon, P. Gilna,
M. Keller, P. Langan, A. K. Naskar, J. N. Saddler, T. J. Tschaplinski, G.
A. Tuskan, C. E. Wyman, Science 2014, 344, 1246843; c) A. Rahimi, A.
Ulbrich, J. J. Coon, S. S. Stahl, Nature 2014, 515, 249-252; d) J. He, C.
Zhao, J. A. Lercher, J. Am. Chem. Soc. 2012, 134, 80768-20775; e) J.
He, C. Zhao, D. Mei, J. A. Lercher, J. Catal. 2014, 309, 280-290.
a) J. Ronnols, A. Jacobs, F. Aldaeus, Holzforschung 2017, 71, 563-
570; b) F. A. Perras, H. Luo, X. M. Zhang, N. S. Mosier, M. Pruski, M.
M. Abu-Omar, J. Phys. Chem. A 2017, 121, 623-630; c) Y. H. Feng, J.
S. Lan, P. T. Ma, X. L. Dong, J. P. Qu, H. Z. He, Wood Sci. Technol.
2017, 51, 135-150.
centrifugation (4000 rpm, 20 min) and dried at 80 C for 24 h to
obtain 0.4 g organosolv pine lignin.
Typical procedure for C-O cleavage of lignin model
compounds: The catalytic conversion of lignin model
compounds was carried out in a stainless-steel autoclave (Parr,
o
75 mL) with an initial H2 pressure of 10 bar and 200 C for 3 h.
[4]
[5]
Typically, lignin model compound (100 mg), Re2O7 (10 mg), and
THF (15 mL) were added in a stainless-steel autoclave (Parr, 75
mL), the autoclave was then charged with an initial H2 pressure
of 10 bar and stirred (800 rpm) at 200 oC for 3 h. After reaction,
the reaction mixture was cooled to room temperature and was
filtered. The liquid phase was analyzed by GC-FID and was
quantified by internal standard method (standard: mesitylene,
HP-5 column, 30 m × 0.32 mm × 0.25 µm).
a) M. C. Haibach, N. Lease, A. S. Goldman, Angew. Chem. Int. Ed.
2014, 53, 10160-10163; b) T. vom Stein, T. den Hartog, J. Buendia, S.
Stoychev, J. Mottweiler, C. Bolm, J. Klankermayer, W. Leitner, Angew.
Chem. Int. Ed. 2015, 54, 5859-5863; c) S. K. Hanson, R. Wu, L. A. P.
Silks, Angew. Chem. Int. Ed. 2012, 51, 3410-3413; d) S. Son, F. D.
Toste, Angew. Chem. Int. Ed. 2010, 49, 3791-3794.
Typical procedure for depolymerization of lignin feedstock:
[6]
a) Q. Xia, Z. Chen, Y. Shao, X. Gong, H. Wang, X. Liu, S. F. Parker, X.
Han, S. Yang, Y. Wang, Nat. Commun. 2016, 7, 11162-11170; b) Y.
Shao, Q. Xia, L. Dong, X. Liu, X. Han, S. F. Parker, Y. Cheng, L. L.
Daemen, A. J. Ramirez-Cuesta, S. Yang, Y. Wang, Nat. Commun.
2017, 8, 16104; c) N. Yan, C. Zhao, P. J. Dyson, C. Wang, L. t. Liu, Y.
Kou, ChemSusChem 2008, 1, 626-629; d) C. Peng, Q. Chen, H. W.
Guo, G. Hu, C. Z. Li, J. L. Wen, H. S. Wang, T. Zhang, Z. B. K. Zhao, R.
C. Sun, H. B. Xie, ChemCatChem 2017, 9, 1135-1143; e) Z. C. Luo, Z.
X. Zheng, Y. C. Wang, G. Sun, H. Jiang, C. Zhao, Green Chem. 2016,
18, 5845-5858.
The catalytic conversion of lignin material was carried out in a
stainless-steel autoclave (Parr, 100 mL) with an initial H2
pressure of 10 bar and 200 oC for 6 h. Typically, lignin (100 mg),
Re2O7 (10 mg), and methanol (30 mL) were charged in the
autoclave and stirred at rate of 800 rpm. After reaction, the
reaction mixture was cooled to room temperature and was
filtered. The filtrate was concentrated under reduced pressure at
35 oC to obtain liquid oil, weighed. The liquid oil was then diluted
to 2 mL with methanol, the monomer products in liquid oil were
analyzed and quantified by internal standard method (standard:
mesitylene) with HP 5973 GC–MS (HP-5 column, 30 m × 0.32
mm × 0.25 µm). The molecular weight distribution of the liquid oil
was analyzed by MALDI-TOF with the mass range of m/z 50-
1000.
[7]
[8]
[9]
a) H. W. Guo, B. Zhang, C. Z. Li, C. Peng, T. Dai, H. B. Xie, A. Q.
Wang, T. Zhang, ChemSusChem 2016, 9, 3220-3229; b) H. W. Guo, B.
Zhang, Z. J. Qi, C. Z. Li, J. W. Ji, T. Dai, A. Q. Wang, T. Zhang,
ChemSusChem 2017, 10, 523-532.
a) J. G. Zhang, N. Yan, Part. Part. Syst. Char. 2016, 33, 610-619; b) J.
W. Zhang, Y. Cai, G. P. Lu, C. Cai, Green Chem. 2016, 18, 6229-6235;
c) J. Zhang, J. Teo, X. Chen, H. Asakura, T. Tanaka, K. Teramura, N.
Yan, ACS Catal. 2014, 4, 1574-1583.
R. G. Harms, I. I. E. Markovits, M. Drees, W. A. Herrmann, M. Cokoja,
F. E. Kuhn, ChemSusChem 2014, 7, 429-434.
Acknowledgements
[10] a) J. R. Dethlefsen , P. Fristrup, ChemSusChem 2015, 8, 767 – 775; b)
S. Raju, M. E. Moret, R. J. M. K. Gebbink, ACS Catal. Sci. 2015, 5,
281–300; c) N. Ota, M. Tamura, Y. Nakagawa, K. Okumura, K.
Tomishige, Angew. Chem. Int. Ed. 2015, 54, 1897-1900; d) N. Ota, M.
Tamura, Y. Nakagawa, K. Okumura, K. Tomishige, ACS Catal. 2016, 6,
3213-3226; e) M. Shiramizu, F. D. Toste, Angew. Chem. Int. Ed. 2012,
51, 8082-8086; f) J. E. Ziegler, M. J. Zdilla, A. J. Evans, M. M. Abu-
Omar, Inorg. Chem. 2009, 48, 9998-10000.
Support from the National Natural Science Foundation of China
(21506214, 21690083, 21473187, 21690080), the Strategic Priority
Research Program of the Chinese Academy of Sciences (XDB17020100),
China Postdoctoral Science Foundation (2017M611279), the Natural
Science Foundation of Shaanxi Province (2017JQ2029) and Shaanxi
University of Technology doctoral Foundation (SLGKYQD-2) is gratefully
acknowledged. The Project-sponsored by SRF for ROCS, SEM.
[11]
B. Zhang, C. Z. Li, T. Dai, G. W. Huber, A. Q. Wang, T. Zhang, RSC
Adv. 2015, 5, 84967-84973.
[12] a) H. C. Lo, H. Han, L. J. D’Souza, S. C. Sinha, E. Keinan, J. Am. Chem.
Soc. 2007, 129, 1246-1253; b) R. Nallagonda, M. Rehan, P. Ghorai, J.
Org. Chem. 2014, 79, 2934-2943; c) T. Nakagiri, M. Murai, K. Takai,
Org. Lett. 2015, 17, 3346-3349; d) Z. Xia, J. Hu, Z. Shen, Q. Yao, W.
Xie, RSC Adv. 2015, 5, 38499-38502.
Conflicts of interest
There are no conflicts to declare.
[13] a) S. Bellemin-Laponnaz, H. Gisie, J. P. Le Ny, J. A. Osborn, Angew.
Chem. Int. Ed. 1997, 36, 976-978; b) B. D. Sherry, A. T. Radosevich, F.
D. Toste, J. Am. Chem. Soc. 2003, 125, 6076-6077; c) M. R. Luzung, F.
D. Toste, J. Am. Chem. Soc. 2003, 125, 15760-15761; d) C. Morrill, R. H.
Grubbs, J. Am. Chem. Soc. 2005, 127, 2842-2843; e) J. J. Kennedy-
Smith, L. A. Young, F. D. Toste, Org. Lett. 2004, 6,1325-1327; f) R. V.
Ohri, A. T. Radosevich, K. J. Hrovat, C. Musich, D. Huang, T. R. Holman,
F. D. Toste, Org. Lett. 2005, 7, 2501-2504; g) E. C. Hansen, D. Lee, J.
Am. Chem. Soc. 2006, 128, 8142-8143; h) Y. Kuninobu, E. Ishii, K. Takai,
Angew. Chem., Int. Ed. 2007, 46,3296-3299; I) B. G. Das, R. Nallagonda,
P. J. Ghorai, Org. Chem. 2012, 77, 5577-5583.
Keywords: lignin depolymerization • rhenium oxide • C-O bond
cleavage
[1]
[2]
a) M. Besson, P. Gallezot, C. Pinel, Chem. Rev. 2014, 114, 1827-1870;
b) A. Q. Wang, T. Zhang, Acc. Chem. Res. 2013, 46, 1377-1386; c) J.
A. Melero, J. Iglesias, A. Garcia, Energy Environ. Sci. 2012, 5, 7393-
7420; d) C. Z. Li, H. L. Cai, B. Zhang, W. Z. Li, G. X. Pei, T. Dai, A. Q.
Wang, T. Zhang, Chin. J. Catal. 2015, 36, 1638-1646.
a) S. D. Mansfield, H. Kim, F. C. Lu, J. Ralph, Nat. Protoc. 2012, 7,
1579-1589; b) C. Z. Li, X. C. Zhao, A. Q. Wang, G. W. Huber, T. Zhang,
Chem. Rev. 2015, 115, 11559-11624; c) C. W. Lahive, P. J. Deuss, C.
S. Lancefield, Z. H. Sun, D. B. Cordes, C. M. Young, F. Tran, A. M. Z.
Slawin, J. G. de Vries, P. C. J. Kamer, N. J. Westwood, K. Barta, J. Am.
Chem. Soc. 2016, 138, 8900-8911; d) P. J. Deuss, M. Scott, F. Tran, N.
J. Westwood, J. G. de Vries, K. Barta, J. Am. Chem. Soc. 2015, 137,
7456-7467.
[14] a) J. M. Nichols, L. M. Bishop, R. G. Bergman, J. A. Ellman, J. Am.
Chem. Soc. 2010, 132, 12554-12555; b) K. Gabov, R. J. A. Gosselink,
A. I. Smeds, P. Fardim, J. Agric. Food Chem. 2014, 62, 10759-10767.
[15] a) B. G. Das, P. Ghorai, Chem.Comm. 2012, 48, 8276-8278; b) C. Lo, H.
Han, L. J. D’souza, S.C. Sinha, E. Keinan, J. Am. Chem. Soc.2007, 129,
1246-1253; c) M. Valla, M. P. Conley, C. Copéret, Catal. Sci. Technol.
This article is protected by copyright. All rights reserved.