D
Synlett
V. Ajdačić et al.
Letter
Pd/C (5 mol%)
cyclohexane, MS
argon, 130 °C, 24 h
ditions that we report are milder than those previously re-
12a–c
ported, and there are few or no byproducts.
The conver-
sion of all substrates resulted in good to excellent yields of
the desired products. The reaction conditions could also be
applied to sterically demanding substrates. In addition, a
variety of functional groups, including alkenyl, ketone,
ether, and ester, were well tolerated in this process. The
level of functional-group compatibility extends even to re-
active aryl halides. The method is also applicable in a two-
step procedure for the synthesis of alkylated aromatic com-
pounds that have a variety of uses in industry.
+
+
O
6
7
, 36%
8, 8%
9, 23%
Pd0
Pd0
O
PdII
H
O
O
PdII
O
PdII
H
Scheme 4 Decarbonylation of (±)-citronellal (6). The GC-MS yield,
with naphthalene as an internal standard, is reported.
Funding Information
This research was financially supported by the Ministry of Education,
Science and Technological Development of Serbia (Grant No. 172008).
The authors acknowledge the support of the FP7 RegPot project FCUB
ERA GA No. 256716. The EC does not share responsibility for the con-
mantane (d-2j; Scheme 5). The partial loss of the deuteri-
um label suggested that the decarbonylation of d-1j is slow-
er than that of 1-adamantylacetaldehyde (1j).
12h
tent of the article.
)(
Pd/C (10 mol%)
cyclohexane, MS
argon, 130 °C, 48 h
O
Supporting Information
D(56%)
D(85%)
Supporting information for this article is available online at
61%
d-1j
d-2j
https://doi.org/10.1055/s-0037-1610433.
S
u
p
p
ortioIgnfmr oaitn
S
u
p
p
o
nrtogI
i
f
rm oaitn
Scheme 5 Deuterium labeling experiment
References and Notes
On the basis of the above observed results and previous
reports, we propose the plausible mechanism for the de-
carbonylation of aliphatic aldehydes shown in Scheme 6.
12h
(1) Modak, A.; Maiti, D. Org. Biomol. Chem. 2016, 14, 21.
(
2) (a) Huang, Y.-B.; Yang, Z.; Chen, M.-Y.; Dai, J.-J.; Guo, Q.-X.; Fu, Y.
ChemSusChem 2013, 6, 1348. (b) Ishida, T.; Kume, K.; Kinjo, K.;
Honma, T.; Nakada, K.; Ohashi, H.; Yokoyama, T.; Hamasaki, A.;
Murayama, H.; Izawa, Y.; Utsunomiya, M.; Tokunaga, M. Chem-
SusChem 2016, 9, 3441.
H2
CO
CO
desorption
(
3) (a) Hu, P.; Snyder, S. A. J. Am. Chem. Soc. 2017, 139, 5007.
L
OC PdII
H
(b) Biswas, P.; Paul, S.; Guin, J. Synlett 2017, 28, 1244. (c) Hu, J.;
OC Pd0
L
H
L
Pd0
O
reductive
elimination
Yu, X.; Xie, W. Synlett 2017, 28, 2517.
(4) Hattori, T.; Ueda, S.; Takakura, R.; Sawama, Y.; Monguchi, Y.;
Sajiki, H. Chem. Eur. J. 2017, 23, 8196.
R
H
R
R
(5) Schirmer, A.; Rude, M. A.; Li, X. Z.; Popova, E.; del Cardayre, S. B.
Science 2010, 329, 559.
oxidative
addition
R
L
(6) (a) Bernard, A.; Joubès, J. Prog. Lipid Res. 2013, 52, 110. (b) Wolf,
F. R. Appl. Biochem. Biotechnol. 1983, 8, 249.
OC PdII
H
L
PdII
H
OC PdII
H
H
(
7) (a) Cheesebrough, T. M.; Kolattukudy, P. E. J. Biol. Chem. 1988,
63, 2738. (b) Yoder, J. A.; Denlinger, D. L.; Dennis, M. W.;
Kolattukudy, P. E. Insect Biochem. Mol. Biol. 1992, 22, 237.
H
R
O
2
R
β−Η elimination
migratory
extrusion
(8) Kikuchi, H.; Ito, I.; Takahashi, K.; Ishigaki, H.; Iizumi, K.;
Kubohara, Y.; Oshima, Y. J. Nat. Prod. 2017, 80, 2716.
Scheme 6 Proposed mechanism for the decarbonylation of aliphatic
aldehydes
(
9) Khadilkar, B. M.; Borkar, S. D. J. Chem. Technol. Biotechnol. 1998,
1, 209.
10) Wang, J.-J.; Chuang, Y.-Y.; Hsu, H.-Y.; Tsai, T.-C. Catal. Today
017, 298, 109.
7
(
(
2
Oxidative addition of the C(O)–H bond of the aldehyde
to palladium provides an acylpalladium hydride complex.
Subsequent migratory extrusion of carbon monoxide and
reductive elimination gives the alkane product, while de-
sorption of CO regenerates the catalyst.
11) (a) Tsuji, J.; Ohno, K. Tetrahedron Lett. 1965, 6, 3969. (b) Ohno,
K.; Tsuji, J. J. Am. Chem. Soc. 1968, 90, 99. (c) Walborsky, H. M.;
Allen, L. E. J. Am. Chem. Soc. 1971, 93, 5465. (d) Doughty, D. H.;
Pignolet, L. H. J. Am. Chem. Soc. 1978, 100, 7083. (e) Fristrup, P.;
Kreis, M.; Palmelund, A.; Norrby, P.-O.; Madsen, R. J. Am. Chem.
Soc. 2008, 130, 5206.
In conclusion, we have reassessed the reaction condi-
tions for the decarbonylation of aliphatic aldehydes and the
22
formation of the corresponding alkanes. The reaction con-
©
Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–E