K. Ohkubo et al.
Bull. Chem. Soc. Jpn. Vol. 79, No. 10 (2006) 1499
Greenwich, CT, 1994, Vol. 4, pp. 1–25.
2
49 The SHACV method provides a superior approach to
directly evaluating the one-electron redox potentials in the pres-
ence of a follow-up chemical and reaction, relative to the better-
known dc and fundamental harmonic ac methods. See: a) M. R.
Wasielewski, R. Breslow, J. Am. Chem. Soc. 1976, 98, 4222.
b) E. M. Arnett, K. Amarnath, N. G. Harvey, J. Cheng, J. Am.
Chem. Soc. 1990, 112, 344.
50 C. K. Mann, K. K. Barnes, In Electrochemical Reactions in
Non-aqueous Systems, Mercel Dekker, New York, 1970.
51 a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648. b) C. Lee,
W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785. c) W. J. Hehre,
L. Radom, P. V. R. Schleyer, J. A. Pople, In Ab Initio Molecular
Orbital Theory, Wiley, New York, 1986.
6
a) S. Fukuzumi, In Advances in Electron Transfer Chemis-
try, ed. by P. S. Mariano, JAI Press, Greenwich, CT, 1992, Vol. 2,
pp. 67–175. b) S. Fukuzumi, S. Itoh, In Advances in Photochem-
istry, ed. by D. C. Neckers, D. H. Volman, John Wiley & Sons,
New York, 1999, Vol. 25, p. 107. c) A. Sancar, In Advances in
Electron Transfer Chemistry, ed. by P. S. Mariano, JAI Press,
Greenwich, CT, 1992, Vol. 2, pp. 215–272.
J. Lind, X. Shen, G. Mer e´ nyi, B. O. Jonsson, J. Am. Chem.
Soc. 1989, 111, 7654.
a) M. S. McDowell, J. H. Espenson, A. Bakac, Inorg.
¨
2
7
2
8
Chem. 1984, 23, 2232. b) K. Zahir, J. H. Espenson, A. Bakac,
J. Am. Chem. Soc. 1988, 110, 5059.
2
9
L. Eberson, R. Gonzales-Luque, J. Lorentzon, M. Merchan,
B. O. Roos, J. Am. Chem. Soc. 1993, 115, 2898.
E. G. German, A. M. Kuznetsov, I. Efremenko, M.
Sheintuch, J. Phys. Chem. A 1999, 103, 10699.
S. Fukuzumi, S. Fujita, Y. Suenobu, H. Yamada, H.
Imahori, Y. Araki, O. Ito, J. Phys. Chem. A 2002, 106, 1241.
a) C. S. Foote, Acc. Chem. Res. 1968, 1, 104. b) C. S.
52 A trace amount of Ph2P(=O)OPh (e.g., 0.6%) was formed
in the reaction of Ph3P with singlet oxygen. In the photocatalytic
oxygenation of Ph3P with Acr –Mes, no Ph2P(=O)OPh was
detected.
53 S. Tsuji, M. Kondo, K. Ishiguro, Y. Sawaki, J. Org. Chem.
1993, 58, 5055.
53
þ
3
0
3
1
3
2
54 M. Nakamura, M. Miki, T. Majima, J. Chem. Soc., Perkin
Trans. 2 2000, 1447.
Foote, E. L. Clennan, Properties and Reactions of Singlet Oxygen,
In Active Oxygen in Chemistry, ed. by C. S. Foote, J. S. Valentine,
A. Greenberg, J. F. Liebman, Chapman and Hall, New York,
ꢂþ
55 The formation of Ph3P was monitored at 380 nm in order
ꢂ
to avoid the decay of the absorption due to the Acr moiety at the
shorter wavelengths.
1
995, pp. 105–140.
a) D. R. Kearns, Chem. Rev. 1971, 71, 395. b) L. M.
Stephenson, M. J. Grdina, M. Orfanopoulos, Acc. Chem. Res.
980, 13, 419.
a) Singlet Oxygen Reactions with Organic Compounds and
3
3
56 G. J. Kavarnos, Fundamentals of Photoinduced Electron
Transfer, Wiley-VCH, New York, 1993.
57 D. G. Ho, R. Gao, J. Celaje, H.-Y. Chung, M. Selke,
Science 2003, 302, 259.
1
3
4
Polymers, ed. by B. Ranby, J. F. Rabeck, Wiley, New York, 1978.
b) Singlet Oxygen, ed. by A. A. Frimer, CRC Press, Boca Raton,
FL, 1985, Vols. I–IV. c) A. Griesbeck, In CRC Handbook of
Organic Photochemistry and Photobiology, ed. by W. M.
Horspool, P.-S. Song, CRC Press, Boca Raton, FL, 1995, p. 301.
58 Z. B. Alfassil, P. Neta, B. Beaver, J. Phys. Chem. A 1997,
101, 2153.
59 S. Yasui, S. Tojo, T. Majima, J. Org. Chem. 2005, 70,
1276.
60 R. Battio, H. L. Clever, C. L. Young, IUPAC Solubility
Data Series, Pergamon Press, Oxford, 1981, Vol. 7.
3
A. G. Greisbeck, J. Mattay, Marcel Dekker, New York, 2005,
5
M. A. Iesce, Synthetic Organic Photochemistry, ed. by
þ
61 The AcrH -catalyzed photooxygenation of substrates have
pp. 299–363.
already been studied extensively.47 See: a) K. Suga, K. Ohkubo,
S. Fukuzumi, J. Phys. Chem. A 2003, 107, 4339. b) K. Suga,
K. Ohkubo, S. Fukuzumi, J. Phys. Chem. A 2005, 109, 10168.
c) K. Suga, K. Ohkubo, S. Fukuzumi, J. Phys. Chem. A 2006,
110, 3860. d) K. Ohkubo, K. Suga, S. Fukuzumi, Chem. Commun.
2006, 2018.
62 No formation of PhCH2N=CHPh was observed in AcrH -
catalyzed photooxidation since the photocatalyst was decomposed
by the formation of a large amount of the adducts.
3
6
S. Fukuzumi, H. Kotani, K. Ohkubo, S. Ogo, N. V.
Tkachenko, H. Lemmetyinen, J. Am. Chem. Soc. 2004, 126, 1600.
K. Ohkubo, H. Kotani, S. Fukuzumi, Chem. Commun.
005, 4520.
H. Kotani, K. Ohkubo, S. Fukuzumi, J. Am. Chem. Soc.
004, 126, 15999.
3
7
2
2
4
3
8
þ
39
265.
K. Ohkubo, T. Nanjo, S. Fukuzumi, Org. Lett. 2005, 7,
4
0
Tetrahydrofuran as a solvent of the Grignard reaction is
63 F. D. Lewis, T.-I. Ho, J. Am. Chem. Soc. 1977, 99, 7991.
64 a) C. G. Shaefer, K. S. Peter, J. Am. Chem. Soc. 1980, 102,
7567. b) F. D. Lewis, Acc. Chem. Res. 1986, 19, 401.
65 P. J. Krusic, J. K. Kochi, J. Am. Chem. Soc. 1968, 90, 7155.
66 a) J. K. Kochi, P. J. Krusic, D. R. Eaton, J. Am. Chem. Soc.
1969, 91, 1877. b) P. J. Krusic, J. K. Kochi, J. Am. Chem. Soc.
1969, 91, 3938. c) P. J. Krusic, J. K. Kochi, J. Am. Chem. Soc.
1969, 91, 3942. d) J. K. Kochi, P. J. Krusic, J. Am. Chem. Soc.
1969, 91, 3944. e) J. A. Howard, E. Furimsky, Can. J. Chem.
1974, 52, 555.
67 a) S. Fukuzumi, K. Shimoosako, T. Suenobu, Y.
Watanabe, J. Am. Chem. Soc. 2003, 125, 9074. b) H. Kitaguchi,
K. Ohkubo, S. Ogo, S. Fukuzumi, J. Am. Chem. Soc. 2005, 127,
6605. c) K. Ohkubo, Y. Moro-oka, S. Fukuzumi, Org. Biomol.
Chem. 2006, 4, 999.
3
8
better than dichloromethane reported previously.
S. Fukuzumi, S. Koumitsu, K. Hironaka, T. Tanaka, J. Am.
Chem. Soc. 1987, 109, 305.
K. J. Smith, E. D. Bergbreiter, M. Newcomb, J. Org.
Chem. 1985, 50, 4549.
4
1
4
2
4
4
3
4
R. D. Mair, A. J. Graupner, Anal. Chem. 1964, 36, 194.
S. Fukuzumi, S. Kuroda, T. Tanaka, J. Am. Chem. Soc.
1
985, 107, 3020.
S. Fukuzumi, M. Ishikawa, T. Tanaka, J. Chem. Soc.,
Perkin Trans. 2 1989, 1037.
C. G. Hatchard, C. A. Parker, Proc. R. Soc. London, Ser. A
956, 235, 518.
K. Ohkubo, K. Suga, K. Morikawa, S. Fukuzumi, J. Am.
Chem. Soc. 2003, 125, 12850.
A. J. Bard, L. R. Faulkner, Electrochemical Methods:
Fundamentals and Applications, John Wiley & Sons, New York,
001, Chap. 10, pp. 368–416.
4
5
4
6
1
4
7
4
8
68 ESR measurements of the hydrogen-abstracted radical
of benzylamine in Figs. 8 and 9 were carried out under same
experimental and instrumental conditions i.e., concentration,
2