Chemistry - A European Journal
10.1002/chem.201801466
COMMUNICATION
Table 4. Nanoparticles as Pd source in the transfer hydrogenolysis.
In summary, a new palladium-based homogeneous catalyst
for the transfer hydrogenolysis of benzylic alcohols was
developed. Formic acid was used as a convenient and potentially
sustainable reductant. A series of primary, secondary and tertiary
alcohols was successfully converted to the corresponding alkyl
arenes. The influence of aryl substituents on the reactivity was
evaluated. We found that formic acid not only acts as reductant,
but it also activates the substrate via esterification. An essential
finding of our investigations was the positive effect of partially-
oxidized ligand on the activity of PdII catalyst precursors. In
addition, the homogeneous nature of the active catalyst was
proposed.
[
Pd] NPs (1 mol%)
L1 (x mol%)
L1-(O) (0.3x mol%)
MeSO H (y mol%)
HCOOH (2 equiv)
2
3
OH
H
1
1
,2-dichloroethane,
00 °C, 18 h
Ph
Ph
1
a
2a
Entry[a]
x
y
Yield (2a) [%][b]
1
2
3
4
4.0
0
16
16
16
32
35
3
8.0
8.0
61
66
Acknowledgements
[a] General reaction conditions: 1a (1.0 mmol), [Pd] NPs (1 mol%), L1
Financial support from Fonds der Chemischen Industrie (Liebig
fellowship IF), the Deutsche Bundesstiftung Umwelt (PhD
fellowship BC) and the University of Tübingen (Institutional
(
x mol%), L1-(O) (0.3x mol%) (partially oxidized L1 was applied), acid co-
2
catalyst (y mol%), formic acid (2.0 mmol) in 1,2-dichloroethane (3 mL), stirred
for 18 h at 100 °C in a closed schlenk pressure tube. [b] Yields determined via
quantitative GC-FID with n-pentadecane as internal standard.
Strategy
of the
University
of Tübingen: Deutsche
Forschungsgemeinschaft ZUK 63) is gratefully acknowledged.
Based on our findings in the reaction optimization, the
transformation of the formate intermediate and the poisoning
experiments, we propose the following mechanism for the transfer
hydrogenolysis reaction: The formation of the cationic palladium-
hydride complex A is initiated either by the acid co-catalyst or
formic acid while the substrate 1a is transformed into the formate
intermediate 3 via esterification (Scheme 3). We do not exclude
an equilibrium with styrene for substrates that allow it. The
reduction occurs via a six-membered distorted chair-like transition
state B in which palladium coordinates the carbonyl group of the
formate. The hydride is transferred from the metal center to the
substrate, releasing the desired deoxygenated product 2a and a
formate anion which ligates to the palladium center. Palladium-
formato complex C regenerates the active catalyst by release of
Keywords: Hydrogenolysis • Palladium • Formic acid •
Homogeneous catalysis • Alcohols
[
1]
2]
J. M. Herrmann, B. König, Eur. J. Org. Chem. 2013, 2013, 7017-7027.
D. H. R. Barton, S. W. McCombie, J. Chem. Soc., Perkin Trans. 1 1975,
[
1574-1585.
[3]
[4]
Padoa, Ponti, Gazz. Chim. Ital. 1907, 37, 105.
B. H. Gross, R. C. Mebane, D. L. Armstrong, Appl. Catal., A. 2001, 219,
281-289.
[5]
a) R. J. Rahaim, R. E. Maleczka, Org. Lett. 2011, 13, 584-587; b) A.
Volkov, K. P. J. Gustafson, C.-W. Tai, O. Verho, J.-E. Bäckvall, H.
Adolfsson, Angew. Chem. 2015, 127, 5211-5215; Angew. Chem. Int. Ed.
2015, 54, 5122-5126; c) H. Wang, L. Li, X.-F. Bai, J.-Y. Shang, K.-F.
Yang, L.-W. Xu, Adv. Synth. Catal. 2013, 355, 341-347; d) N. C.
Mamillapalli, G. Sekar, Adv. Synth. Catal. 2015, 357, 3273-3283; e) N.
C. P. Araujo, A. F. Brigas, M. L. S. Cristiano, L. M. T. Frija, E. M. O.
Guimaraes, R. M. S. Loureiro, J. Mol. Catal. A: Chem. 2004, 215, 113-
120; f) M. Tamaki, G. X. Han, V. J. Hruby, J. Org. Chem. 2001, 66, 3593-
2
CO , closing the catalytic cycle.
OH
[
Pd(II)]
[Pd(0)]
O
Ph
HA
1a
3596; g) C.-B. Yu, Y.-G. Zhou, Angew. Chem. 2013, 125, 13607-13610;
H
OH
O
Angew. Chem. Int. Ed. 2013, 52, 13365-13368.
A
[
6]
7]
N. Kalutharage, C. S. Yi, J. Am. Chem. Soc. 2015, 137, 11105-11114.
N. Thakar, N. F. Polder, K. Djanashvili, H. van Bekkum, F. Kapteijn, J. A.
Moulijn, J. Catal. 2007, 246, 344-350.
O
H
CO , H
2
[
P
P
Ph
Pd
H
3
OCO
Ph
[8]
a) S. C. A. Sousa, T. A. Fernandes, A. C. Fernandes, Eur. J. Org. Chem.
2016, 2016, 3109-3112; b) M. Yasuda, Y. Onishi, M. Ueba, T. Miyai, A.
A
Baba, J. Org. Chem.2001, 66, 7741-7744.
[9]
J. S. Bajwa, J. Slade, O. Repič, Tetrahedron Lett. 2000, 41, 6025-6028.
[
10] a) X. Liu, G. Lu, Y. Guo, Y. Guo, Y. Wang, X. Wang, J. Mol. Catal. A:
Chem. 2006, 252, 176-180; b) J. Feng, C. Yang, D. Zhang, J. Wang, H.
Fu, H. Chen, X. Li, Appl. Catal., A. 2009, 354, 38-43; c) S. Sawadjoon,
A. Lundstedt, J. S. M. Samec, ACS Catal. 2013, 3, 635-642.
P
P
Ph
Pd
O
H
H
O
O
O
C
Pd
P
[
11] a) A. K. Singh, S. Singh, A. Kumar, Catal. Sci. Technol. 2016, 6, 12-40;
b) A. Álvarez, A. Bansode, A. Urakawa, A. V. Bavykina, T. A. Wezendonk,
M. Makkee, J. Gascon, F. Kapteijn, Chem. Rev. 2017, 117, 9804-9838;
c) D. Mellmann, P. Sponholz, H. Junge, M. Beller, Chem. Soc. Rev. 2016,
P
H
B
H
45, 3954-3988.
2
a
[
12] T. Maegawa, A. Akashi, H. Sajiki, Synlett 2006, 2006, 1440-1442.
13] a) P. H. Gehrtz, V. Hirschbeck, I. Fleischer, Chem. Commun. 2015, 51,
Ph
[
1
2574-12577; b) V. Hirschbeck, P. H. Gehrtz, I. Fleischer, J. Am. Chem.
Scheme 3. Proposed reaction mechanism for the palladium-catalyzed transfer
Soc. 2016, 138, 16794-16799.
hydrogenolysis with formic acid as reductant.
This article is protected by copyright. All rights reserved.