Page 9 of 12
ACS Catalysis
Activity and Electronic Structure Determination of Bis(arylimidazol-
(d) Formenti, D.; Ferretti, F.; Topf, C.; Surkus, A.-E.; Pohl, M.-M.;
Radnik, J.; Schneider, M.; Junge, K.; Beller, M.; Ragaini, F. Co-Based
Heterogeneous Catalysts from Well-Defined α-Diimine Complexes:
Discussing the Role of Nitrogen. J. Catal. 2017, 351, 79–89; (e) Maier,
T. M.; Sandl, S.; Shenderovich, I. G.; Jacobi von Wangelin, A.;
Weigand, J. J.; Wolf, R. Amine‐Borane Dehydrogenation and Transfer
Hydrogenation Catalyzed by α‐Diimine Cobaltates. Chem. – A Eur. J.
2019, 25, 238–245; (f) Ziegler, C. G. P.; Maier, T. M.; Pelties, S.;
Taube, C.; Hennersdorf, F.; Ehlers, A. W.; Weigand, J. J.; Wolf, R.
Construction of Alkyl-Substituted Pentaphosphido Ligands in the
Coordination Sphere of Cobalt. Chem. Sci. 2019, 10, 1302–1308.
(17) Recent studies from our group showing the beneficial effect of
olefins: (a) Gülak, S.; Jacobi von Wangelin, A. Chlorostyrenes in Iron-
Catalyzed Biaryl Coupling Reactions. Angew. Chem., Int. Ed. 2012, 51,
1357–1361; (b) Gülak, S.; Gieshoff, T. N.; Jacobi von Wangelin, A.
Olefin-Assisted Iron-Catalyzed Alkylation of Aryl Chlorides. Adv.
Synth. Catal. 2013, 355, 2197–2202; (c) Gülak, S.; Stepanek, O.;
Malberg, J.; Rad, B. R.; Kotora, M.; Wolf, R.; Jacobi von Wangelin, A.
Highly Chemoselective Cobalt-Catalyzed Biaryl Coupling Reactions.
Chem. Sci. 2013, 4, 776–784.
(18) (a) Johnson, J. B.; Rovis, T. More than Bystanders: The Effect of
Olefins on Transition-Metal-Catalyzed Cross-Coupling Reactions.
Angew. Chem., Int. Ed. 2008, 47, 840–871; (b) Defieber, C.;
Grützmacher, H.; Carreira, E. M. Chiral Olefins as Steering Ligands in
Asymmetric Catalysis. Angew. Chem., Int. Ed. 2008, 47, 4482–4502.
(19) Cation effects: (a) Collman, J. P.; Finke, R. G.; Cawse, J. N.;
Brauman, J. I. Lewis Acid Catalyzed [RFe(CO)4]- Alkyl Migration
Reactions. A Mechanistic Investigation. J. Am. Chem. Soc. 1978, 100,
4766–4772; (b) Hartmann, R.; Chen, P. Noyori’s Hydrogenation
Catalyst Needs a Lewis Acid Cocatalyst for High Activity. Angew.
Chem., Int. Ed. 2001, 40, 3581–3585. (c) Macchioni, A. Ion Pairing in
Transition-Metal Organometallic Chemistry. Chem. Rev. 2005, 105,
2039–2073; (d) Kennedy, C. R.; Lin, S.; Jacobsen, E. N. The Cation-π
Interaction in Small-Molecule Catalysis. Angew. Chemie Int. Ed. 2016,
55, 12596–12624; (e) Kita, M. R.; Miller, A. J. M. An Ion-Responsive
Pincer-Crown Ether Catalyst System for Rapid and Switchable Olefin
Isomerization. Angew. Chem., Int. Ed. 2017, 56, 5498–5502; (f)
Andrez, J.; Guidal, V.; Scopelliti, R.; Pécaut, J.; Gambarelli, S.;
Mazzanti, M. Ligand and Metal Based Multielectron Redox Chemistry
of Cobalt Supported by Tetradentate Schiff Bases. J. Am. Chem. Soc.
2017, 139, 8628–8638; (g) Neel, A. J.; Hilton, M. J.; Sigman, M. S.;
Toste, F. D. Exploiting Non-Covalent π Interactions for Catalyst
Design. Nature 2017, 543, 637–646; (h) Broere, D. L. J.; Mercado, B.
Q.; Bill, E.; Lancaster, K. M.; Sproules, S.; Holland, P. L. Alkali Cation
Effects on Redox-Active Formazanate Ligands in Iron Chemistry.
Inorg. Chem. 2018, 57, 9580–9591; (i) Yamada, S. Cation−π
Interactions in Organic Synthesis. Chem. Rev. 2018, 118, 11353–
11432; (j) Mahmudov, K. T.; Gurbanov, A. V.; Guseinov, F. I.; Guedes
da Silva, M. F. C. Noncovalent Interactions in Metal Complex
Catalysis. Coord. Chem. Rev. 2019, 387, 32–46.
2-ylidene)pyridine Cobalt Alkyl and Hydride Complexes. J. Am.
Chem. Soc. 2013, 135, 13168–13184; (d) Friedfeld, M. R.; Margulieux,
G. W.; Schaefer, B. A.; Chirik, P. J. Bis(phosphine)cobalt Dialkyl
Complexes for Directed Catalytic Alkene Hydrogenation. J. Am.
Chem. Soc. 2014, 136, 13178–13181; (e) Rösler, S.; Obenauf, J.;
Kempe, R. A Highly Active and Easily Accessible Cobalt Catalyst for
Selective Hydrogenation of C=O Bonds. J. Am. Chem. Soc. 2015, 137,
7998–8001; (f) Xu, R.; Chakraborty, S.; Yuan, H.; Jones, W. D.
Acceptorless, Reversible Dehydrogenation and Hydrogenation of N-
Heterocycles with a Cobalt Pincer Catalyst. ACS Catal. 2015, 5, 6350–
6354; (g) Korstanje, T.J.; van der Vlugt, J.I.; Elsevier, C.J.; de Bruin,
B. Hydrogenation of Carboxylic Acids with a Homogeneous Cobalt
Catalyst. Science 2015, 350 (6258), 298‑302; (h) Adam, R.; Cabrero-
Antonino, J. R.; Spannenberg, A.; Junge, K.; Jackstell, R.; Beller, M.
A General and Highly Selective Cobalt-Catalyzed Hydrogenation of N-
Heteroarenes under Mild Reaction Conditions. Angew. Chem., Int. Ed.
2017, 56, 3216–3220.
(9) (a) Lyaskovskyy, V.; de Bruin, B. Redox Non-Innocent Ligands:
Versatile New Tools to Control Catalytic Reactions. ACS Catal. 2012,
2 270–279; (b) Luca, O. R.; Crabtree, R. H. Redox-Active Ligands in
Catalysis. Chem. Soc. Rev. 2013, 42, 1440–1459.
(10) (a) Gärtner, D.; Welther, A.; Rad, B. R.; Wolf, R.; Jacobi von
Wangelin, A. Heteroatom-Free Arene-Cobalt and Arene-Iron Catalysts
for Hydrogenations. Angew. Chem., Int. Ed. 2014, 53, 3722–3726; (b)
Büschelberger, P.; Gärtner, D.; Reyes-Rodriguez, E.; Kreyenschmidt,
F.; Koszinowski, K.; Jacobi von Wangelin, A.; Wolf, R. Alkene
Metalates as Hydrogenation Catalysts. Chem. Eur. J. 2017, 23, 3139–
3151.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(11) Schnöckelborg, E. M.; Khusniyarov, M. M.; De Bruin, B.; Hartl,
F.; Langer, T.; Eul, M.; Schulz, S.; Pöttgen, R.; Wolf, R. Unraveling
the Electronic Structures of Low-Valent Naphthalene and Anthracene
Iron Complexes: X-Ray, Spectroscopic, and Density Functional
Theory Studies. Inorg. Chem. 2012, 51, 6719–6730.
(12) tom Dieck, H.; Bruder, H. Bis(diazadiene)Iron Complexes,
(R1N=CR2–CR2=NR1)2Fe. J. Chem. Soc., Chem. Commun. 1977, 24–
25.
(13) Flisak, Z.; Sun, W. H. Progression of Diiminopyridines: From
Single Application to Catalytic Versatility. ACS Catal. 2015, 5, 4713–
4724.
(14) (a) Hill, N. J.; Vargas-Baca, I.; Cowley, A. H. Recent
Developments
in
the
Coordination
Chemistry
of
Bis(imino)acenaphthene (BIAN) Ligands with s- and p-Block
Elements. Dalton Trans. 2009, 0, 240–253; (b) Fedushkin, I. L.;
Skatova, A. A.; Chudakova, V. A.; Fukin, G. K. Four-Step Reduction
of Dpp-Bian with Sodium Metal: Crystal Structures of the Sodium Salts
of the Mono-, Di-, Tri- and Tetraanions of Dpp-Bian. Angew. Chem.,
Int. Ed. 2003, 42, 3294–3298.
(15) Selected examples of hydrogenations with BIAN: (a) van Asselt,
R.; Elsevier, C. J. Homogeneous Catalytic Hydrogenation of Alkenes
by Zero-Valent Palladium Complexes of Cis-Fixed Dinitrogen
Ligands. J. Mol. Catal. 1991, 65, L13–L19; (b) Van Laren, M. W.;
Elsevier, C. J. Selective Homogeneous Palladium(0)-Catalyzed
Hydrogenation of Alkynes to (Z)-Alkenes. Angew. Chem., Int. Ed.
1999, 38 (24), 3715–3717; (c) Villa, M.; Miesel, D.; Hildebrandt, A.;
Ragaini, F.; Schaarschmidt, D.; Jacobi von Wangelin, A. Synthesis and
Catalysis of Redox-Active Bis(imino)acenaphthene (BIAN) Iron
Complexes. ChemCatChem 2017, 9, 3203–3209.
(16) Selected (BIAN)Co reports: (a) Khusniyarov, M. M.; Harms, K.;
Burghaus, O.; Sundermeyer, J. Molecular and Electronic Structures of
Homoleptic Nickel and Cobalt Complexes with Non-Innocent Bulky
Diimine Ligands Derived from Fluorinated 1,4-Diaza-1,3-Butadiene
(DAD) and Bis(arylimino)acenaphthene (BIAN). Eur. J. Inorg. Chem.
2006, 2985–2996; (b) Rosa, V.; Carabineiro, S. A.; Avilés, T.; Gomes,
P. T.; Welter, R.; Campos, J. M.; Ribeiro, M. R. Synthesis,
Characterisation and Solid State Structures ofꢀ α-Diimine Cobalt(II)
Complexes: Ethylene Polymerisation Tests. J. Organomet. Chem.
2008, 693, 769–775; (c) Pelties, S.; Maier, T.; Herrmann, D.; De Bruin,
B.; Rebreyend, C.; Gärtner, S.; Shenderovich, I. G.; Wolf, R. Selective
P4 Activation by a Highly Reduced Cobaltate: Synthesis of Dicobalt
Tetraphosphido Complexes. Chem. - A Eur. J. 2017, 23, 6094–6102.
(20) α-Methylstyrene was hydrogenated under standard conditions in
the presence of various functional additives (1 equiv., protocol B, 3 h,
20 °C, THF (2 mL)): No decrease in hydrogenation activity was
observed with added PhNH2, whereas reduced activity was observed
with 4-Tol-CH2OH, PhC(O)Ph, respectively. No conversion was
obtained in the presence of PhCN, PhC(O)H, PhNO2, respectively.†
(21) Brenna, D.; Villa, M.; Gieshoff, T. N.; Fischer, F.; Hapke, M.;
Jacobi von Wangelin, A. Iron-Catalyzed Cyclotrimerization of
Terminal Alkynes by Dual Catalyst Activation in the Absence of
Reductants. Angew. Chem., Int. Ed. 2017, 56, 8451–8454.
(22) Muthukrishnan, I.; Sridharan, V.; Menéndez, J. C. Progress in the
Chemistry of Tetrahydroquinolines. Chem. Rev. 2019, 119, 5057–
5191.
(23) (a) Widegren, J. A.; Finke, R. G. A review of the problem of
distinguishing true homogeneous catalysis from soluble or other metal-
particle heterogeneous catalysis under reducing conditions. J. Mol.
Catal. A 2003, 198, 317–341; (b) Astruc, D.; Lu, F.; Aranzaes, J. R.
Nanoparticles as Recyclable Catalysts: The Frontier between
Homogeneous and Heterogeneous Catalysis. Angew. Chem., Int. Ed.
2005, 44, 7852–7872; (c) Crabtree, R. H., Resolving Heterogeneity
Problems and Impurity Artifacts in Operationally Homogeneous
ACS Paragon Plus Environment