Table 1 Hydrogenation of aromatic compounds with Ru(0) NPsa
Entry
Stabilizer
t/h
Substrate
TOFb/hꢀ1
Productc (%)
1
2
3
4
5
6
7
8
HEA16Cl
RAME-b-CD/HEA16Cl
HEA16Cl
RAME-b-CD/HEA16Cl
HEA16Cl
HEA16Cl
24
24
24
24
3.2
7
Anisole
Anisole
Toluene
Toluene
Styrene
Styrene
Styrene
Styrene
3.4
10.2
2.2
10.1
31.2
14.3
83.3
26.7
Methoxycyclohexane (27)
Methoxycyclohexane (82)
Methylcyclohexane (18)
Methylcyclohexane (81)
Ethylbenzene (100)
Ethylbenzene (99), ethylcyclohexane (1)
Ethylbenzene (100)
Ethylbenzene (71), ethylcyclohexane (29)
RAME-b-CD/HEA16Cl
RAME-b-CD/HEA16Cl
1.2
7
a
Reaction conditions: Ru(0) (3.8 ꢂ 10ꢀ5 mol), HEA16Cl (7.6 ꢂ 10ꢀ5 mol) or HEA16Cl (3.8 ꢂ 10ꢀ5 mol) + RAME-b-CD (3.8 ꢂ 10ꢀ5 mol),
b
c
Substrate (mol/mol) = 100, 1 bar H2, 20 1C, H2O (10 mL), stirred at 1500 rpm. Based on hydrogen consumption. Determined by GC analysis.
assumed that the cyclodextrin can interact with the surfactant
adsorbed onto the surface but also with organic substrate.
Work is currently underway in our laboratories to confirm this
hypothesis.
Notes and references
z The RAME-b-CD was a native b-CD partially O methylated with
statistically 1.8 OH groups modified per glucopyranose unit.
Fig. 3 Dynamic organisation of the stabilizers around the Ru(0) NPs
1 G. Schmid, in Nanoscale Materials in Chemistry, ed.
K. J. Blabunde, Wiley-VCH, New York, 2001.
2 A. Roucoux and K. Philippot, in The Handbook of Homogeneous
Hydrogenation, eds. J. G. de Vries and C. J. Elsevier, Wiley-VCH,
surface with the polar head of the surfactant directed towards
the bulk aqueous phase. Indeed, experiments conducted with
RAME-b-CD or HEA16Cl alone have demonstrated that the
amount of stabilizing agent required to stabilize metallic
NPs is lower in the case of HEA16Cl than in the case of
RAME-b-CD, suggesting that interaction of HEA16Cl with
metallic NPs is stronger than that of RAME-b-CD. Finally, it
should be pointed that the stabilization mode proposed for the
RAME-b-CD/HEA16Cl/Ru(0) NPs displays some analogies
with that proposed for the HEA16Cl stabilized Ru(0) NPs.
Indeed, the metallic NP is always protected by a double layer
of stabilizer. The first layer is composed of HEA16Cl and the
second layer of RAME-b-CD. Interestingly, this type of
stabilization could contribute to greatly improve the mass
transfer between the metallic surface of the NPs and the bulk
aqueous solution. Indeed, cyclodextrin could exert some
control on the HEA16Cl adsorption process, acting as a
suitable spacer between the alkyl chains of the surfactants,
reducing their intermolecular interactions and, as a conse-
quence, allowing a better diffusion of substrates towards the
metallic surface. Furthermore, substrate access to the surface
could also be increased by a partial release of cyclodextrin in
the bulk aqueous as schematically shown in Fig. 3.
2007; A. Roucoux, A. Nowicki and K. Philippot, in Nanoparticles
and Catalysis, ed. D. Astruc, Wiley-VCH, 2007.
3 L. Duran Pachon and G. Rothenberg, Appl. Organomet. Chem.,
2008, 22, 288; D. Astruc, F. Lu and J. R. Aranzaes, Angew. Chem.,
Int. Ed., 2005, 44, 7852.
4 J. Liu, W. Ong, E. Roman, M. J. Lynn, R. Xu and A. E. Kaifer,
Langmuir, 2000, 16, 3000; J. Liu, J. Alvarez and A. E. Kaifer, Adv.
Mater., 2000, 12, 1381; J. Liu, R. Xu and A. E. Kaifer, Langmuir,
1998, 14, 7337.
5 J. Liu, J. Alvarez, W. Ong, E. Roman and A. E. Kaifer, J. Am.
Chem. Soc., 2001, 123, 11148.
6 J. Liu, S. Mendoza, E. Roman, M. J. Lynn, R. Xu and
A. E. Kaifer, J. Am. Chem. Soc., 1999, 121, 4304.
7 O. Crespo-Biel, A. Jukovic, M. Karlsson, D. N. Reinhoudt and
J. Huskens, Isr. J. Chem., 2005, 45, 353.
8 F. Callari, S. Petralia and S. Sortino, Chem. Commun., 2006, 1009.
9 L. Barrientos, N. Yutronic, F. del Monte, M. C. Guttierez and
P. Jara, New J. Chem., 2007, 31, 1400; S. Rodriquez-Llamazares,
P. Jara, N. Yutronic, M. Noyong, J. Bretschneider and U. Simon,
J. Colloid Interface Sci., 2007, 316, 202.
10 B. Tutaj, A. Kasprzyk and J. Czapkiewicz, J. Inclusion Phenom.
Macrocycl. Chem., 2003, 47, 133.
11 A. Nowicki, V. Le Boulaire and A. Roucoux, Adv. Synth. Catal.,
2007, 349, 2326; A. Nowicki, Y. Zhang, B. Leger, J.-P. Rolland,
´
H. Bricout, E. Monflier and A. Roucoux, Chem. Commun., 2006,
296; A. Nowicki, A. Ponchel, E. Monflier and A. Roucoux, Dalton
Trans., 2007, 5714.
In this case, the steric hindrance around the particle is
clearly reduced and some free cyclodextrins are available to
solubilize the organic substrate in the aqueous phase.
12 V. M. S. Gil and N. C. Oliveira, J. Chem. Educ., 1990, 67, 473.
13 S. H. Wu and D. H. Chen, J. Colloid Interface Sci., 2004, 273, 165;
S. H. Wu and D. H. Chen, Chem. Lett., 2004, 33, 406.
14 B. Nikoobakth and M. A. El-Sayed, Langmuir, 2001, 17, 6368.
15 J. D. Aiken, III, Y. Lin and R. G. Finke, J. Mol. Catal. A: Chem.,
1996, 114, 29; S. Bucher, J. Horms, H. Modrow, R. Brinkmann,
N. Waldofner, H. Bonnemann, L. Beuermann, S. Krischok,
W. Maus-Friedrichs and V. Kempter, Surf. Sci., 2002, 497, 321;
J. Schulz, S. Levigne, A. Roucoux and H. Patin, Adv. Synth.
Catal., 2002, 344, 266; A. Roucoux, J. Schulz and H. Patin, Adv.
Synth. Catal., 2003, 345, 222.
Taken together, these results demonstrated that catalytically
active metallic NPs can be stabilized by a CD inclusion
complex in water. These NPs appear more active than the
NPs stabilized by classical surfactants. The origin of this better
efficiency is probably in connection with a dynamic organiza-
tion of the protective agents around the NPs. Indeed, it is
ꢁc
This journal is The Royal Society of Chemistry 2009
1230 | Chem. Commun., 2009, 1228–1230