5
0
F. Alonso et al. / Applied Catalysis A: General 378 (2010) 42–51
[
3] R. Karmhag, T. Tesfamichael, E. W a¨ ckelg a˚ rd, G. Nikalsson, M. Nygren, Sol. Energy
8 (2000) 329–333.
4] (a) I.S. Lee, N. Lee, S.R. Paik, T. Hyeon, J. Am. Chem. Soc. 46 (2007) 4630–4660;
b) S. Rodr ı´ guez-Llamazares, J. Merch a´ n, I. Olmedo, H.P. Marambio, J.P. Mu n˜ oz, P.
6
[
(
Jara, J.C. Sturm, B. Chornik, O. Pe n˜ a, N. Yutronic, M.J. Kogan, J. Nanosci. Nano-
technol. 8 (2008) 3820–3827.
[
[
5] J. Geng, B.F.G. Johnson, in: B. Zhou, S. Hermans, G.A. Somorjai (Eds.), Nanotech-
nology in Catalysis, vol. 1, Springer, Berlin, 2004, pp. 159–182.
6] (a) A. Houdayer, R. Schneider, D. Billaud, J. Ghanbaja, J. Lambert, Synth. Met. 151
(
(
2005) 165–174;
b) J. Park, E. Kang, S.U. Son, H.M. Park, M.K. Lee, J. Kim, K.W. Kim, H.-J. Noh, J.-H.
Scheme 2. Filtration test in the transfer hydrogenation of acetophenone.
Park, C.J. Bae, J.-G. Park, T. Hyeon, Adv. Mater. 17 (2005) 429–434;
(
(
(
(
c) M. Kidwai, N.K. Mishra, V. Bansal, A. Kumar, S. Mozumdar, Catal. Commun. 9
2008) 612–617;
d) A. Saxena, A. Kumar, S. Mozumdar, Appl. Catal. A: Gen. 317 (2007) 210–215;
e) A. Dhakshinamoorthy, K. Pitchumani, Tetrahedron Lett. 49 (2008) 1818–
1
823;
f) V. Polshettiwar, B. Baruwati, R.S. Varma, Green Chem. 11 (2009) 127–131.
7] P. Song, D. Wen, Z.X. Guo, T. Korakianitis, Phys. Chem. Chem. Phys. 10 (2008)
057–5065.
8] (a) L.K. Kurihara, G.M. Chow, P.E. Schoen, Nanostruct. Mater. 5 (1995) 607–613;
b) Y. Wada, H. Kuramoto, T. Sakata, H. Mori, T. Sumida, T. Kitamura, S. Yanagida,
Chem. Lett. (1999) 607–608;
(
[
[
5
(
(
(
c) M. Tsuji, M. Hashimoto, T. Tsuji, Chem. Lett. (2002) 1232–1233;
d) L. Bai, J. Fan, Y. Cao, F. Yuan, A. Zuo, Q. Tang, J. Cryst. Growth 311 (2009) 2474–
2479.
[9] (a) D.-H. Chen, S.-H. Wu, Chem. Mater. 12 (2000) 1354–1360;
(
(
(
b) S.-H. Wu, D.-H. Chen, J. Colloid Interface Sci. 259 (2003) 282–286;
c) S.-H. Wu, D.-H. Chen, Chem. Lett. (2004) 406–407;
d) K.H. Kim, Y.B. Lee, S.G. Lee, H.C. Park, S.S. Park, Mater. Sci. Eng., A 381 (2004)
337–342.
[10] (a) G.G. Couto, J.J. Klein, W.H. Schreiner, D.H. Mosca, A.J.A. de Oliveira, A.J.G.
Zarbin, J. Colloid Interface Sci. 311 (2007) 461–468;
Scheme 3. Summary of the tests to determine the nature of the catalysis.
(
b) P.K. Khanna, P.V. More, J.P. Jawalkar, B.G. Bharate, Mater. Lett. 63 (2009)
384–1386.
11] (a) F. Alonso, G. Radivoy, M. Yus, Russ. Chem. Bull., Int. Ed. 52 (2003) 2576;
b) F. Alonso, M. Yus, Chem. Soc. Rev. 33 (2004) 284–293;
(c) F. Alonso, M. Yus, Pure Appl. Chem. 80 (2008) 1005–1012.
12] (a) F. Alonso, J.J. Calvino, I. Osante, M. Yus, Chem. Lett. 34 (2005) 1262–
1
From the essays above it can be inferred that the transfer
hydrogenation of carbonyl compounds catalysed by NiNPs
occur under heterogeneous catalysis on the surface of the NiNPs
[
[
(
(
Scheme 3).
1263;
(b) F. Alonso, J.J. Calvino, I. Osante, M. Yus, J. Exp. Nanosci. 1 (2006) 419–
4
. Conclusion
433.
[
[
13] (a) F. Alonso, I. Osante, M. Yus, Adv. Synth. Catal. 348 (2006) 305–308;
(
(
b) F. Alonso, I. Osante, M. Yus, Synlett (2006) 3017–3020;
c) F. Alonso, I. Osante, M. Yus, Tetrahedron 63 (2007) 93–102;
Nickel nanoparticles, generated by reduction of nickel(II)
chloride with lithium in the presence of a catalytic amount of DTBB
and utilised in the transfer hydrogenation of carbonyl compounds
with isopropanol, have been characterised by TEM, EDX, XPS, XRD,
EPRand BET area. Thefastest conversion was reached at 76 8C (88.5%
in 8 min). The NiNPs havebeen found to be superior to commercially
available catalysts, including Raney nickel. The reaction rate is
dependent upon the amount of acetophenone with a negative slope,
but it is not proportional to the amount of isopropanol, and
independent on the LiCl concentration. Based on TPO experiments,
Raman spectroscopy, TG and XPS analysis, the deactivation of the
catalyst with reiterative reuse has been ascribed to surface
oxidation, while the formation of coke has been ruled out. Moreover,
the NiNPs have been demonstrated to be the true catalyst in this
reaction, the heterogeneous nature of the process being unequivo-
cally established on the basis of TEM, kinetic, poisoning, and
filtration experiments.
(d) F. Alonso, P. Riente, M. Yus, ARKIVOC iv (2008) 8–15.
14] (a) F. Alonso, P. Riente, M. Yus, Tetrahedron 64 (2008) 1847–1852;
(
(
b) F. Alonso, P. Riente, M. Yus, Tetrahedron Lett. 49 (2008) 1939–1942;
c) F. Alonso, P. Riente, M. Yus, Tetrahedron 65 (2009) 10637–10643.
[15] F. Alonso, P. Riente, M. Yus, Synlett (2008) 1289–1292.
[
16] (a) F. Alonso, P. Riente, M. Yus, Synlett (2007) 1877–1880;
b) F. Alonso, P. Riente, M. Yus, Eur. J. Org. Chem. (2008) 4908–4914.
(
[
17] (a) F. Alonso, P. Riente, M. Yus, Synlett (2009) 1579–1582;
(b) F. Alonso, P. Riente, M. Yus, Tetrahedron Lett. 50 (2009) 3070–3073;
(c) F. Alonso, P. Riente, M. Yus, Eur. J. Org. Chem (2009) 6034–6042.
[
[
18] D. Astruc, F. Lu, J.R. Aranzaes, Angew. Chem. Int. Ed. 44 (2005) 7852–7872.
19] R.P. Furstenau, G. McDougall, M.A. Langell, Surf. Sci. 150 (1985) 55–79.
[20] S. Lee, N. Lee, J. Park, B.H. Kim, Y.-W. Yi, T. Kim, T.K. Kim, I.H. Lee, S.R. Paik, T.
Hyeon, J. Am. Chem. Soc. 128 (2006) 10658–10659.
[
[
21] C.M.R. Rem e´ dios, J.M. Sasaki, Powder Diffr. 23 (2008) S56–S58.
22] H. Shim, P. Dutta, M.S. Seehra, J. Bonevich, Solid State Commun. 145 (2008) 192–
196.
[23] (a) S. Lefondeur, S. Monteverdi, S. Molina, M.M. Bettahar, Y. Fort, E.A. Zhilinskaya,
A. Aboukais, M. Lelaurain, J. Mater. Sci. 36 (2001) 2633–2638;
(b) A.A. Konchits, F.V. Motsnyi, Y.N. Petrov, S.P. Kolesnik, V.S. Yefanov, M.L.
Terranova, E. Tamburri, S. Orlanducci, V. Sessa, M. Rossi, J. Appl. Phys. 100
(
(
2006) 124315/1–124315/7;
c) N. Guskos, M. Maryaniak, J. Typek, P. Podsiadly, U. Narkiewicz, E. Senderek, Z.
Acknowledgements
Roslaniec, J. Non-Cryst. Solids 355 (2009) 1400–1404.
[
24] Y. Moglie, Doctoral Thesis Dissertation, Bah ı´ a Blanca, Argentina, 2009.
This work was generously supported by the Spanish Ministerio
de Educaci o´ n y Ciencia (MEC; grant no. CTQ2007-65218 and
Consolider Ingenio 2010-CSD2007-00006) and the Generalitat
Valenciana (grant no. PROMETEO/2009/039). P. R. thanks the MEC
for a predoctoral grant. We are grateful to Javier Ruiz-Mart ı´ nez for
carrying out the TPO analysis at the Inorganic Chemistry
Department of the University of Alicante.
[25] M.J. Andrews, C.N. Pillai, Indian J. Chem. B 16 (1978) 465–468.
[
26] J. Wettergren, E. Buitrago, P. Ryberg, H. Adolfsoon, Chem. Eur. J. 15 (2009) 5709–
718.
5
[27] (a) C.F. de Graauw, J.A. Peters, H. van Bekkum, J. Huskens, Synthesis (1994) 1007–
1017;
(
(
b) K. Nishide, M. Node, Chirality 14 (2002) 759–767;
c) J.S. Cha, Org. Proc. Res. Dev. 10 (2006) 1032–1053.
[
[
28] J.J. Spivey, G.W. Roberts, B.H. Davies (Eds.), Catalyst Deactivation, Elsevier,
Amsterdam, 2001.
29] (a) A. Shamsi, Appl. Catal. A: Gen. 277 (2004) 23–30;
(
b) Y.-X. Pan, C.-J. Liu, P. Shi, J. Power Sources 176 (2008) 46–53.
References
[
[
[
30] U.K. Singh, S.W. Krska, Y. Sun, Org. Process Res. Dev. 10 (2006) 1153–1156.
31] C. Li, T.C. Brown, Carbon 39 (2000) 725–732.
32] See, for instance: E. Ochoa-Fern a´ ndez, D. Chen, Z. Yu, B. Tøtdal, M. Rønning, A.
Holmen, Catal. Today, 102/103 (2005) 45–49.
[
[
1] W. Tseng, C. Chen, J. Mater. Sci. 41 (2006) 1213–1219.
2] (a) T. Hyeon, Chem. Commun. (2003) 927–934;
(
(
b) S.P. Gubin, Y.A. Koksharov, G.B. Khomutov, G.Y. Yurkov, Russ. Chem. Rev. 74
2005) 489–520.
[
33] A. Tanksale, J.N. Beltramini, J.A. Dumesic, G.Q. Lu, J. Catal. 258 (2008) 366–377.