Journal of the American Chemical Society
Page 8 of 10
hydrogenation of functionalized amides under basic and neutral condi-
tions. Catal. Sci. Technol. 5, 1181-1186.
2015
14. Cabrero-Antonino, J. R.; Alberico, E. ; Drexler, H.-J.; Baugmann, W.;
Junge, K.; Junge, H.; Beller, M. Efficient Base-Free Hydrogenation of
Amides to Alcohols and Amines Catalyzed by Well-Defined Pincer Im-
idazolyl–Ruthenium Complexes. ACS Catal. 2016, 6, 47-54.
Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. Catalytic Hydrogena-
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
,
tion of Cyclic Carbonates: A Practical Approach from CO2 and Epox-
ides to Methanol and Diols. Angew. Chem., Int. Ed. 2012, 51,
13041−13045. (f) Kumar, A.; Janes, T.; Espinosa-Jalapa, N. A.; Milstein,
D. Manganese Catalyzed Hydrogenation of Organic Carbonates to
Methanol and Alcohols. Angew. Chem. Int. Ed. 2018, 57, 12076−
12080. (g) Zubar, V.; Lebedev, Y.; Azofra, L. M.; Cavallo, L.; El-Sepelgy,
O.; Rueping, M. Hydrogenation of CO2 -Derived Carbonates and Pol-
ycarbonates to Methanol and Diols by Metal-Ligand Cooperative Man-
ganese Catalysis. Angew. Chem., Int. Ed. 2018, 57, 13439−13443.
1
5. Miura, T.; Naruto, M.; Toda, K.; Shimomura, T.; Saito, S. Multifac-
eted catalytic hydrogenation of amides via diverse activation of a steri-
cally confined bipyridine–ruthenium framework. Sci. Rep. 2017, 7,
1586.
16. Shi, L.; Tan, X.; Long, J.; Xiong, X.; Yang, S.; Xue, P.; Lv, H; Zhang,
X. Direct Catalytic Hydrogenation of Simple Amides: A Highly Efficient
Approach from Amides to Amines and Alcohols. Chem. Eur. J. 2017, 23,
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
29. (a) Kumar, A.; Janes, T.; Espinosa-Jalapa, N. A.; Milstein, D. Selec-
tive Hydrogenation of Cyclic Imides to Diols and Amines and Its Appli-
cation in the Development of a Liquid Organic Hydrogen Carrier. J. Am.
Chem. Soc. 2018, 140, 7453-7457. (b) Kar, S.; Rauch, M.; Kumar, A.;
Leitus, G.; Ben-David, Y.; Milstein, D. Selective Room-Temperature
Hydrogenation of Amides to Amines and Alcohols Catalyzed by a Ru-
5
46-548.
1
7. Kita, Y.; Higuchi, T.; Mashima, K. Hydrogenation of amides cata-
lyzed by a combined catalytic system of a Ru complex with a zinc salt.
Chem. Commun. 2014, 50, 11211-11213.
1
8. Jayarathne, U.; Zhang, Y.; Hazari, N.; Bernskoetter, W. H. Selective
thenium Pincer Complex and Mechanistic Insight, ACS Catal., 2020
,
Iron-Catalyzed Deaminative Hydrogenation of Amides. Organometal-
lics 2017, 36, 409-416.
10, 5511-5515. (c) Hu, P.; Fogler, E.; Diskin-Posner, Y.; Iron, M. A.;
Milstein, D. A novel liquid organic hydrogen carrier system based on cat-
alytic peptide formation and hydrogenation. Nat. Commun. 2015, 6,
6859.
19. Schneck, F.; Assmann, M.; Balmer, M.; Harms, K.; Langer, R. Selec-
tive Hydrogenation of Amides to Amines and Alcohols Catalyzed by Im-
proved Iron Pincer Complexes. Organometallics 2016, 35, 1931-1943.
30. Fogler, E.; Garg, J. A.; Hu, P.; Leitus, G.; Shimon, L. J. W.; Milstein,
D. System with Potential Dual Modes of Metal–Ligand Cooperation:
Highly Catalytically Active Pyridine-Based PNNH–Ru Pincer Com-
2
0. Rezayee, N. M.; Samblanet, D. C.; Sanford, M. S. Iron-Catalyzed Hy-
drogenation of Amides to Alcohols and Amines. ACS Catal 2016, 6,
plexes.
Chem.
Eur.
J.
2014
,
20,
15727-15731.
6
377-6383.
31. Balaraman, E.; Khaskin, E.; Leitus, G.; Milstein, D. Catalytic trans-
formation of alcohols to carboxylic acid salts and H2 using water as the
2
1. Garg, J. A.; Chakraborty, S.; Ben-David, Y.; Milstein, D. Unprece-
dented iron-catalyzed selective hydrogenation of activated amides to
amines and alcohols. Chem. Commun. 2016, 52, 5285-5288.
22. Papa,V.; Cabrero-Antonino, J. R.; Alberico, E.; Spanneberg, A.;
Junge, K.; Junge H.; Beller M. Efficient and selective hydrogenation of
amides to alcohols and amines using a well-defined manganese–PNN
oxygen atom source. Nat. Chem. 2013
,
5, 122-125.
32.
33. (a) Byrne, F. P.; Jin, S.; Paggiola, G.; Petchey, T. H. M.; Clark, J. H.;
Farmer, T. J.; Hunt, A. J.; Robert McElroy, C.; Sherwood, J. Tools and
techniques for solvent selection: green solvent selection guides. Sustain-
able Chem. Processes 2016, 4, 1−24. (b) Vignes, R. Dimethyl sulfoxide
(DMSO) , a new, clean, unique, superior solvent, ACS Annual Meeting,
2000. (c) Xiang, J.-C.; Gao, Q.-H.; Wu, A.-X. The Applications of
DMSO. Solvents as Reagents in Organic Synthesis: Reactions and Ap-
plications, 2017, 315-353.
pincer
3. Smith, A. M.; Whyman, R. Review of Methods for the Catalytic Hy-
drogenation of Carboxamides. Chem. Rev. 2014, 114, 5477−5510.
4. Chardon, A.; Morisset, E.; Rouden, J.; Blanchet, J. Recent Advances
in Amide Reductions. Synthesis, 2018
50, 984−997.
5. Gunanathan, C.; Ben-David, Y.; Milstein, D. Direct Synthesis of Am-
complex.
Chem.
Sci.
2017
,
8,
3576-3585.
2
2
,
2
ides from Alcohols and Amines with Liberation of H
317, 790-792.
2
. Science 2007
,
34. Langanke, J.; Wolf, A.; Hofmann, J.; Bo ̈h m, K.; Subhani, M. A.;
Muller, T. E.; Leitner, W.; Gurtler, C. Carbon dioxide (CO2) as sustain-
̈
̈
26. Zeng, H.; Guan, Z. Direct Synthesis of Polyamides via Catalytic De-
hydrogenation of Diols and Diamines. J. Am. Chem. Soc. 2011, 133,
able feedstock for polyurethane production. Green Chem. 2014, 16,
1865−1870.
1
159-1161.
35. Keijer, T.; Bakker, V.; Slootweg, J. C. Circular chemistry to enable a
2
7. Gnanaprakasam, B.; Balaraman, E.; Gunanathan, C.; Milstein, D.
circular economy. Nat. Chem. 2019
,
11, 190−195.
Synthesis of polyamides from diols and diamines with liberation of H2.
J. Polym. Sci. A 2012, 50, 1755-1765.
36. Molchanov, S.; Gryff-Keller, A. Solvation of Amides in DMSO and
CDCl3: An Attempt at Quantitative DFT-Based Interpretation of 1H
and 13C NMR Chemical Shifts. The Journal of Physical Chemistry A
2017, 121, 9645-9653.
28. (a) Milstein, D.; Balaraman, E.; Gunanathan, C.; Gnanaprakasam B.;
Zhang, J. Novel ruthenium complexes and their uses in processes for for-
mation and/or hydrogenation of esters, amides and derivatives thereof
US Pat. Ap., US20130281664A1, 2013. (b) Krall, E. M.; Klein, T. W.;
Andersen, R. J.; Nett, A. J.; Glasgow, R. W.; Reader, D. S.; Dauphinais,
B. C.; McIlrath, S. P.; Fischer, A. A.; Carney, M. J.; Hudson, D. J.; Rob-
ertson, N. J. Controlled hydrogenative depolymerization of polyesters
and polycarbonates catalyzed by ruthenium(II) PNN pincer complexes.
Chem. Commun. 2014, 50, 4884−4887. (c) Fuentes, J. A.; Smith, S. M.;
Scharbert, M. T.; Carpenter, I.; Cordes, D. B.; Slawin, A. M. Z.; Clarke,
M. L. On the Functional Group Tolerance of Ester Hydrogenation and
Polyester Depolymerisation Catalysed by Ruthenium Complexes of
Tridentate Aminophosphine Ligands. Chem. - Eur. J. 2015, 21,
10851−10860. (d) Westhues, S.; Idel, J.; Klankermayer, J. Molecular
catalyst systems as key enablers for tailored polyesters and polycar-
bonate recycling concepts. Sci. Adv. 2018, 4, eaat9669−9676. (e) Han,
37. Chand, A.; Chowdhuri, S. Effects of dimethyl sulfoxide on the hy-
drogen bonding structure and dynamics of aqueous N-methylacetamide
solution.
J.
Chem.
Sci.
2016
,
128,
991-1001.
38. Kumar, A.; Espinosa-Jalapa, N. A.; Leitus, G.; Diskin-Posner, Y.; Av-
ram, L.; Milstein, D. Direct Synthesis of Amides by Dehydrogenative
Coupling of Amines with either Alcohols or Esters: Manganese Pincer
Complex as Catalyst. Angew. Chem. Int. Ed. 2017, 56, 14992-14996.
39. Espinosa-Jalapa, N. A.; Kumar, A.; Leitus, G.; Diskin-Posner, Y.; Mil-
stein, D. Synthesis of Cyclic Imides by Acceptorless Dehydrogenative
Coupling of Diols and Amines Catalyzed by a Manganese Pincer Com-
plex. J. Am. Chem. Soc. 2017
,
139, 11722-11725.
40. Kumar, A.; Janes, T.; Espinosa-Jalapa, N. A.; Milstein, D. Manganese
Catalyzed Hydrogenation of Organic Carbonates to Methanol and Al-
cohols. Angew. Chem. Int. Ed. 2018
,
57, 12076-12080.
ACS Paragon Plus Environment