1076
M. Kannan, S. Muthaiah
Letter
Synlett
In conclusion, the double dehydrogenation of several
primary amines to form nitrile products using an in situ
catalyst system generated from [Ru(COD)Cl2]n as the pre-
catalyst and HMTA as the additive was developed.11–13 The
present catalyst system is highly atom economic as it avoids
the use of any oxidizing agent/hydrogen acceptor and yield-
ed the nitrile products even in good to excellent yields. The
mechanism studies revealed that the reaction involves de-
hydrogenative pathway with the evolution of hydrogen
molecule.
42, 1480. (e) Ray, R.; Hazari, A. S. Lahiri G. K.; Maiti, D. Chem.
Asian J. 2018, 13, 2138. (f) Ray, R.; Hazari, A. S.; Chandra, S.;
Maiti, D.; Lahiri, G. K. Chem. Eur. J. 2018, 24, 1067. (g) Ray, R.;
Chandra, S.; Maiti, D.; Lahiri, G. K. Chem. Eur. J. 2016, 22, 8814.
(5) (a) Crabtree, R. H. Chem. Rev. 2017, 117, 9228. (b) Clot, E.;
Eisenstein, O.; Crabtree, R. H. Chem. Commun. 2007, 2231.
(6) (a) Tseng, K.-N. T.; Rizzi, A. M.; Szymczak, N. K. J. Am. Chem. Soc.
2013, 135, 16352. (b) Hale, L. V. A.; Malakar, T.; Tseng, K.-N. T.;
Zimmerman, P. M.; Paul, A.; Szymczak, N. K. ACS Catal. 2016, 6,
4799.
(7) Dutta, I.; Yadav, S.; Sarbajna, A.; De, S.; Hölscher, M.; Leitner,
W.; Bera, J. K. J. Am. Chem. Soc. 2018, 140, 8662.
(8) Kannan, M.; Muthaiah, S. Organometallics 2019, 38, 3560.
(9) (a) Ananikov, V. P. Understanding Organometallic Reaction
Mechanisms and Catalysis: Computational and Experimental
Tools; Wiley-VCH: Weinheim, 2015. (b) Hong, L.; Sun, W.; Yang,
D.; Li, G.; Wang, R. Chem. Rev. 2016, 116, 4006. (c) Grzybowska-
Świerkosz, B. Top. Catal. 2002, 21, 35.
Funding Information
The authors acknowledge TEQIP-III for financial assistance in the
form of a fellowship to M.K.()
(10) (a) Kwak, Y.; Matyjaszewski, K. Polym. Int. 2009, 58, 242.
(b) Caillault, X.; Pouillaoua, Y.; Barrault, J. J. Mol. Catal. A: Chem.
1995, 103, 117. (c) Dreyfors, J. M.; Jones, S. B.; Sayed, Y. Am. Ind.
Hyg. Assoc. J. 1989, 50, 579. (d) Cheng, C.; Gong, S.; Fu, Q.; Shen,
L.; Liu, Z.; Qiao, Y.; Fu, C. Polym. Bull. 2011, 66, 735.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
(11) General Procedure for the Dehydrogenation of Amine
Ruthenium(II) chloride 1,5-cyclooctadiene 1 (3 mol%), HMTA (2,
3 mol%), amine 3 (0.25 mL), and dry toluene (1.0 mL) were
placed in a Schlenk tube. The reaction mixture was stirred
under open conditions to nitrogen and refluxed for 24 h. After
completion of the reaction all toluene were evaporated under
vacuo, the oxidized products 4 were isolated from crude
mixture with the help of column chromatography using hex-
ane/EtOAc as eluent. The formation of products was confirmed
by comparing the 1H NMR data with literature reports.
(12) General Procedure for the Dehydrogenation of Benzylamine
3 in the Presence of Cyclohexene
References and Notes
(1) (a) Pollak, P.; Romeder, G.; Hagedorn, F.; Gelbke, H. -P. Nitriles,
In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH:
Weinheim, 2012. (b) Kleemann, A.; Engel, J.; Kutscher, B.;
Reichert, D. Pharmaceutical Substance: Synthesis Patents, Appli-
cations, 4th ed; Thieme: Stuttgart, 2001. (c) Larock, R. C. In Com-
prehensive Organic Transformations: A Guide to Functional Group
Preparations; Wiley-VCH: Weinheim, 1989, 819–995. (d) Layer
R, W. Chem. Rev. 1963, 63, 489. (e) Belowich, M. E.; Stoddart, J. F.
Chem. Soc. Rev. 2012, 41, 2003. (f) Martin, S. F. Pure Appl. Chem.
2009, 81, 195.
In a 50 mL closed-vessel reactor, ruthenium(II) chloride 1,5-
cyclooctadiene 1 (0.004 g, 0.013 mmol), HMTA (2, 0.002 g,
0.013 mmol), amine 3 (0.05 mL, 0.5mmol), cyclohexene (0.4
mL, 5 mmol), and dry toluene (0.6 mL) were taken. The result-
ing mixture was heated at 110 °C for 24 h. After completion of
the reaction, the solution was cooled to room temperature and
extracted with CH2Cl2 then analyzed through gas chromatogra-
phy; yield of benzonitrile 4 49% and cyclohexane 24%.
(2) (a) Grasselli, R. K. Catal. Today 1999, 49, 141. (b) Sandmeyer, T.
Ber. Dtsch. Chem. Ges. 1885, 18, 1496. (c) Sandmeyer, T. Ber.
Dtsch. Chem. Ges. 1885, 18, 1492. (d) Rosenmund, K. W.; Struck,
E. Ber. Dtsch. Chem. Ges. 1919, 52, 1749.
(3) (a) Nicolaou, K. C.; Mathison, C. J. N.; Montagnon, T. Angew.
Chem. Int. Ed. 2003, 42, 4077. (b) Aoyama, T.; Sonoda, N.;
Yamauchi, M.; Toriyama, K.; Anzai, M.; Ando, A.; Shioiri, T.
Synlett 1998, 35. (c) Ochiai, M.; Kajishima, D.; Sueda, T. Hetero-
cycles 1997, 46, 71. (d) Orito, K.; Hatakeyama, T.; Takeo, M.;
Uchiito, S.; Tokuda, M.; Suginome, H. Tetrahedron 1998, 54,
8403. (e) Fu, P. P.; Harvey, R. G. Chem. Rev. 1978, 78, 317.
(4) (a) Tang, R.; Diamond, S. E.; Neary, E. R. N.; Mares, F. J. Chem.
Soc., Chem. Commun. 1978, 13, 562. (b) Bailey, A. J.; James, B. R.
Chem. Commun. 1996, 20, 2343. (c) Ray, R.; Chandra, S.; Yadav,
V.; Mondal, P.; Maiti, D.; Lahiri, G. K. Chem. Commun. 2017, 53,
4006. (d) Yamaguchi, K.; Mizuno, N. Angew. Chem. Int. Ed. 2003,
(13) General Procedure for in situ 1H NMR Study to Show Forma-
tion of Imine Intermediate
In N2 atmosphere benzylamine 3 (0.05 mL, 0.46 mol), ruthe-
nium(II) chloride 1,5-cyclooctadiene (1, 0.004 g, 3 mol%) HMTA
(2, 0.002 g, 3 mol%), and toluene-d8 as a solvent (0.4 mL) were
taken in the NMR tube. The reaction mixture was heated at
110 °C for 12 h, and then the reaction mixture was cooled to
room temperature before collecting the NMR data.
© 2020. Thieme. All rights reserved. Synlett 2020, 31, 1073–1076