Page 3 of 8
Journal Name
Green Chemistry
DOI: 10.1039/C6GC02405J
dGraduate School of EEWS, Korea Advanced Institute of Science and
Technology (KAIST), 291 Daehakꢀro, Yuseong, Daejeon 305ꢀ701, Republic
of Korea
the COOH group of the first LA molecule adsorbed on the SnO2
surface. To retain this local atomistic arrangement, two distinct
reaction paths were proposed based on DFT energetics, as shown in
Fig. 5. The L2A formation path (blue in Fig. 5) proceeds via a linear
eDepartment of Chemistry, Sungkyunkwan University, Suwon 440ꢀ476,
Republic of Korea
*
configuration of (LA)2 , which is thermodynamically more
Author Contributions
favourable by 0.26 eV, but the second dehydration required for L2A
formation proceeds via a highly unstable conformation of L2A on the
SnO2 surface (by losing a key COOH–SnO2 interaction), and is
thereby kinetically unfavourable. In contract, the LT formation path
‡These authors contributed equally.
Electronic Supplementary Information (ESI) available: [details of any
supplementary information available should be included here]. See
DOI: 10.1039/c000000x/
*
(red in Fig. 5) proceeds via a cyclic configuration of (LA)2 , where
the COOH and OH groups of both LA molecules are positioned in
opposite directions, which is thermodynamically less preferred
during the initial stage, but involves no significantly unstable states.
For continuous heterogeneous catalysis, the catalyst stability is
vital, together with high activity. It is notable that high LA
1.C. O. Tuck, E. Perez, I. T. Horvath, R. A. Sheldon and M. Poliakoff,
Science, 2012, 337, 695ꢀ699.
2.D. Saygin, D. J. Gielen, M. Draeck, E. Worrell and M. K. Patel, Renew.
Sustain. Energy Rev. 2014, 40, 1153ꢀ1167.
3.A. Corma, S. Iborra and A. Velty, Chemical Rev., 2007, 107, 2411ꢀ2502.
4.Y. RománꢀLeshkov, C. J. Barrett, Z. Y. Liu and J. A. Dumesic, Nature,
2007, 447, 982ꢀ985.
5.T. P. Vispute, H. Zhang, A. Sanna, R. Xiao and G. W. Huber, Science,
2010, 330, 1222ꢀ1227.
6.S. Inkinen, M. Hakkarainen, A.ꢀC. Albertsson and A. Södergård,
Biomacromol., 2011, 12, 523ꢀ532.
7.N. Saito, T. Okada, H. Horiuchi, N. Murakami, J. Takahashi, M. Nawata,
H. Ota, K. Nozaki and K. Takaoka, Nature Biotechnol., 2001, 19, 332ꢀ335.
8.L. Shen, E. Worrell and M. Patel, Biofuel, Bioprod. & Bioref., 2010, 4, 25ꢀ
40.
9.E. T. Vink, S. Davies and J. J. Kolstad, Ind. Biotechnol., 2010, 6, 212ꢀ224.
10. P. R. Gruber, E. S. Hall, J. J. Kolstad, M. L. Iwen, R. D. Benson and R.
L. Borchardt, US Patent, 1993, 5247059.
11. D. K. Yoo, D. Kim and D. S. Lee, Macromolecular research, 2006, 14,
510ꢀ516.
conversion, as well as high LꢀLT selectivity, was maintained over
SSOꢀ80 at the optimized reaction conditions for more than 2,500 h
without a notable loss in activity (Fig. S10). The XRD pattern of the
used catalyst was very similar to that of the fresh catalyst, with a
tetragonal SnO2 phase present in both XRD patterns. The TEM
analysis confirmed that the used catalyst had wellꢀdispersed SnO2
nanoparticles with sizes smaller than 5 nm, similar to the fresh
catalyst (Fig. S11). The TGA analysis showed almost identical
profiles for the fresh and used catalyst, except below 100 °C, which
indicates that coke deposition is negligible over the SSOꢀ80 catalyst
(Fig. S12). In addition, no decomposition products, such as CO and
CO2, were detected, as confirmed by analysis of the gaseous
products using a TCD detector.
After the catalytic reaction using SSOꢀ80, the crude LT crystal
12. M. Dusselier, P. Van Wouwe, A. Dewaele, E. Makshina and B. F. Sels,
Energy & Environ. Sci., 2013, 6, 1415ꢀ1442.
1
was separated from the aqueous solution by filtration. The H NMR
13. T. Tsukegi, T. Motoyama, Y. Shirai, H. Nishida and T. Endo, Polymer
Degrad. Stabil., 2007, 92, 552ꢀ559.
14. P. P. Upare, Y. K. Hwang, J.ꢀS. Chang and D. W. Hwang, Ind. & Eng.
Chem. Res., 2012, 51, 4837ꢀ 4842.
15. M. Dusselier, P. Van Wouwe, A. Dewaele, P. A. Jacobs and B. F. Sels,
Science, 2015, 349, 78ꢀ80.
spectrum of the crude LT sample had two strong characteristic peaks
at 1.68 and 5.05 ppm, corresponding to the methyl (–CH3) and
methine (–CH) groups, respectively, together with weak LA and
H2Oꢀrelated peaks (Fig. S13).
16. P. Van Wouwe, M. Dusselier, E. Vanleeuw and B. Sels, ChemSusChem,
2016, 9, 907ꢀ921.
Conclusions
17. K. Alfonsi, J. Colberg, P. J. Dunn, T. Fevig, S. Jennings, T. A. Johnson,
H. P. Kleine, C. Knight, M. A. Nagy, D. A. Perry and M. Stefaniak, Green
Chemistry, 2008, 10, 31ꢀ36.
We designed a novel heterogeneous catalyst for continuous and
direct synthesis of optically pure LꢀLT from LꢀLA under atmospheric
18. H. E. Bellis and K. K. Bhatia, US Patent, 1992, 5138074.
19. H. P. Benecke, R. A. Markle and R. G. Sinclair, US Patent, 1994,
5332839
20. S. I. Moon and Y. Kimura, Polymer Int., 2003, 52, 299ꢀ303.
21. Y. M. Harshe, G. Storti, M. Morbidelli, S. Gelosa and D. Moscatelli,
Macromolecular Reaction Engineering, 2007, 1, 611ꢀ621.
22. T. Trimaille, M. Möller and R. Gurny, J. Polym. Sci. A: Polym. Chem.,
2004, 42, 4379ꢀ4391.
conditions based on SnO2–SnO2 nanocomposites with the average
crystallite size of 2 nm, based on GCMC and DFT calculations. The
new catalytic system gave a record high LT yield of 94% with
almost 100% enantioselectivity and excellent longꢀterm stability
(>2,500 h) at a WHSV of 1.0 hꢀ1. By adopting this green process,
optically pure lactide can be produced easily from aqueous lactic
acid with a high yield and no waste.
23. A. P. Dove, V. C. Gibson, E. L. Marshall, A. J. White and D. J. Williams,
Chem. Commun., 2001, 283ꢀ284.
24. D. W. Hwang, P. Kashinathan, J. M. Lee, J. H. Lee, U.ꢀh. Lee, J.ꢀS.
Hwang, Y. K. Hwang and J.ꢀS. Chang, Green Chem., 2011, 13, 1672ꢀ1675.
25. P. P. Upare, J. M. Lee, Y. K. Hwang, D. W. Hwang, J. H. Lee, S. B.
Halligudi, J. S. Hwang and J. S. Chang, ChemSusChem, 2011, 4, 1749ꢀ
1752.
Acknowledgements
This work was supported by the R&D Program of Institutional Research
Program of KRICT [KKꢀ1601ꢀC00].
Notes and references
26. H. Deng, F. J. Lamelas and J. M. Hossenlopp, Chem. Mat., 2003, 2429ꢀ
2436.
aGreen Carbon Catalysis Research Group, Korea Research Institute of
Chemical Technology (KRICT), 141 Gajeongro, Yuseoung, Daejeon 305– 27. H. Ma, K. Teng, Y. Fu, Y. Song, Y. Wang and X. Dong, Energy &
Environ. Sci., 2011, 4, 3067ꢀ3074.
bDepartment of Green Chemistry & Biotechnology, University of Science 28. C. D. A. C. Erbetta, R. J. Alves, J. M. Resende, R. F. d. S. Freitas and R.
600, Republic of Korea; Email: dwhwang@krict.re.kr, jschang@krict.re.kr
and Technology (UST), 113 Gwahangno, Yuseong, Daejeon 305–333,
Republic of Korea
G. d. Sousa, J. Biomat. Nanobiotech., 2012, 3, 208ꢀ225.
cSchool of Energy and Chemical Engineering, Ulsan National Institute of
Science and Technology (UNIST), 50 UNISTꢀgil, Uljuꢀgun, Ulsan 689ꢀ798,
Republic of Korea
This journal is © The Royal Society of Chemistry 2013
J. Name., 2016, 00, 1-3 | 3