Table 2 Comparative performance of MnIIIAlPO-5 and TS-1 in the oxidation of olefins and p-cymene using APBa
Sub :
oxidant
Conv.b
actual
T/K t/h (mol ratio) Solvent mol%
Oxidantb
efficiency
mol%
Substrate Catalyst
Product distribution (mol%) (actual)
cyclohexene
67.5
68.0
85.0
77.9
epoxide
31.9
30.8
6.7
16.7
12.2
diols
0.5
1.1
3.4
2.9
others
—
—
5.0
2.5
—
MnAlPO-5 333
MnAlPO-5 333
MnAlPO-5 333
3
3
3
3
3
3 : 1
3 : 1
3 : 1
3 : 1
3 : 1
DCM
CH3CN 31.8
15.1
CH3CN 22.0
32.3
96.9
95.3
45.3
67.3
45.9
—
TS-1
TS-1
333
333
DCM
15.3
32.6
84.5
3.0
1-methyl-1-
cyclohexene
67.3
68.3
76.5
epoxide
others
MnAlPO-5 333
MnAlPO-5 333
MnAlPO-5 333
3
3
3
3
3
3 : 1
3 : 1
3 : 1
3 : 1
3 : 1
DCM
97.8
94.4
71.2
85.3
36.1
31.0
29.0
5.4
5.2
7.5
1.5
2.5
18.3
23.1
4.4
CH3CN 31.5
23.7
CH3CN 28.0
—
TS-1
TS-1
333
333
71.5
87.8
DCM
12.0
p-cymene
cuminaldehyde 4-isopropyl-
benzoic acid
others
MnAlPO-5 373
MnAlPO-5 373
3
1
1
1
3 : 1
1 : 1
1 : 1
3 : 1
acetone
acetone
acetone No reaction
acetone No reaction
6.9
9.2
19.8
9.2
93.0
90.6
5.0
9.0
0.5
0.3
1.3
—
TS-1
TS-1
373
373
a
b
Catalyst ; 0.25 g; solid APB ; 3.49 g (10.54 mmol). See ESI{ for further experimental and analytical details.
strongly coordinating ligands, especially water. The rationale
behind choosing TS-1 for comparison (in the epoxidation
reactions) was that, TS-1, due to its hydrophobicity, would be
less susceptible for deactivation in the presence of water, and has
been proven to be a good epoxidation catalyst using aqueous
peroxides (H2O2). Although TS-1 does exhibit some activity for
the epoxidation reaction, it is distinctly inferior in terms of overall
selectivity for the desired epoxide product compared to
MnIIIAlPO-5 as a single-site catalyst. More significantly, it did
not exhibity any appreciable activity for the oxidation of p-cymene
under comparable conditions (Table 2). The choice of solvent in
the epoxidation reactions, again has a moderate influence, but
reactions carried out in the absence of an organic solvent were
inferior both in terms of activity and selectivity. Further,
experiments analogous those reported earlier,12,17 were carried
out to rule out the possibility of leaching.{
Many other organic compounds that yield products such as
vitamins, fragrances, flavours and general pharmaceutical and
agrochemical intermediates have been selectively oxidized using
APB and an appropriate single-site solid catalyst.18,19 From Tables
1 and 2, it is clear that acetylperoxyborate (APB) in combination
with a single-site microporous AlPO-based catalyst is dintinctly
superior (1-octanol being the only exception), both in terms of
activity and selectivity, to the widely-used microporous single-site
titanosilicate (TS-1), for the oxidation of alcohols and for the
epoxidation of olefins. The high activities, selectivities and the
relatively mild conditions employed with the former of these
catalysts, coupled with ease of transport, storage and stability of
the solid oxidant, augurs well for the future use of APB in
conjunction with other single-site catalysts for fine-chemical,
pharmaceutical and agrochemical applications.18,20
Notes and references
1 Modern Oxidation Methods, ed. J.-E. Ba¨ckvall, Wiley-VCH, Weinheim,
2005.
2 N. Theyssen, Z. Hou and W. Leitner, Chem.–Eur. J., 2006, 12,
3401.
3 J. M. Thomas and R. Raja, Catal. Today, 2006, 117, 22.
4 J. Clayden, N. Greeves, S. Warren and P. Wothers, Organic Chemistry,
Oxford University Press, 2001.
5 J. M. Thomas, R. Raja and D. W. Lewis, Angew. Chem., Int. Ed., 2005,
44, 6456.
6 M. Anpo and J. M. Thomas, Chem. Commun., 2006, 3273.
7 B. Notari, Adv. Catal., 1996, 41, 253; M. Taramasso, G. Perego and
B. Notari, US Pat, 4410501, 1983; I. E. Maxwell, Stud. Surf. Sci. Catal.,
1996, 101, 1.
8 C. R. A. Catlow, S. A. French, A. A. Sokol and J. M. Thomas, Phil.
Trans. R. Soc. London, Ser. A, 2005, 363, 913.
9 J. M. Thomas and R. Raja, Chem. Commun., 2001, 675.
10 J. H. Yu and R. Xu, Chem. Soc. Rev., 2006, 35, 593.
11 R. Raja, G. Sankar and J. M. Thomas, J. Am. Chem. Soc., 1999, 121,
11926; M. Dugal, G. Sankar, R. Raja and J. M. Thomas, Angew.
Chem., Int. Ed., 2000, 39, 2310.
12 R. Raja, J. M. Thomas, M. Xu, K. D. M. Harris, M. Greenhill-Hooper
and K. Quill, Chem. Commun., 2006, 448.
13 K. Mori, T. Hara, T. Mizugaki, K. Ebitani and K. Kaneda, J. Am.
Chem. Soc., 2004, 26, 10657.
14 F. Porta and L. Prati, J. Catal., 2004, 224, 397.
15 Fine Chemicals through Heterogeneous Catalysis, ed. R. A. Sheldon and
H. van Bekkum, Wiley-VCH, Weinheim, 2001; R. Neumann and
M. Levin-Elad, Appl. Catal., A, 1995, 122, 85.
16 D. I. Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu, A. F. Carley,
A. A. Herzing, M. Watnabe, C. J. Kiely, D. W. Knight and
G. J. Hutchings, Science, 2006, 311, 362.
17 W. Buijs, R. Raja, J. M. Thomas and H. Wolters, Catal. Lett., 2003, 91,
253.
18 M. Greenhill-Hooper, R. Raja and J. M. Thomas, British. Pat. Appl.,
0423586.7, 2004; WO Pat. Appl 2006043075 A1, 2006.
19 R. Raja, J. M. Thomas, M. Greenhill-Hooper, S. L. Ley and R. G. Bell,
manuscript in preparation.
We thank National Chemical Laboratory, India, for supplying
us with a sample of TS-1.
20 R. Raja, J. M. Thomas and M. Greenhill-Hooper, manuscript in
preparation.
1926 | Chem. Commun., 2007, 1924–1926
This journal is ß The Royal Society of Chemistry 2007