S. Bose et al. / Catalysis Communications 12 (2011) 1193–1197
1197
(HAT) reaction with 2,4,6-tri-t-butylphenol. Kinetic investigations
with 2,4,6-tri-t-butylphenol reveals a first order rate dependence on
the concentration of the catalyst as well as on that of the oxidant. The
results further supports the conclusion of Goldberg et al. that
oxomanganese(V) transients are effective in HAT processes despite
having very low redox potentials [34].
Acknowledgments
The financial support (SR/S1/IC-08/2007) from DST, Government
of India, is gratefully acknowledged. We thank UGC (India) for the
award of fellowships to SB and AP.
References
[1] R. Giri, B.-F. Shi, K.M. Engle, N. Maugel, J.-Q. Yu, Chem. Soc. Rev. 38 (2009)
3242–3272.
[2] J.A. Labinger, J.E. Bercaw, Nature 417 (2002) 507–514.
[3] T. Punniyamurthi, S. Velusamy, J. Iqbal, Chem. Rev. 105 (2005) 2329–2364.
[4] K.C. Gupta, A.K. Sutar, C.C. Lin, Coord. Chem. Rev. 253 (2009) 1926–1946.
[5] T. Katsuki, Coord. Chem. Rev. 140 (1995) 189–214.
[6] A. Gunay, K.H. Theopold, Chem. Rev. 110 (2010) 1060–1081.
[7] D. Mansuy, C. R. Chim. 10 (2007) 392–413.
[8] W. Nam, Acc. Chem. Res. 40 (2007) 522–531.
[9] C.M. Che, J.S. Huang, Chem. Commun. (2009) 3996–4015.
[10] Z. Gross, H.B. Gray, Adv. Synth. Catal. 346 (2004) 165–170.
[11] I. Aviv-Harel, Z. Gross, Chem. Eur. J. 15 (2009) 8382–8394.
[12] I. Aviv, Z. Gross, Chem. Commun. (2007) 1987–1999.
[13] I. Luobeznova, M. Raizman, I. Goldberg, Z. Gross, Inorg. Chem. 45 (2006) 386–394.
[14] L. Simkhovich, G. Goluvkov, Z. Gross, Angew. Chem. Int. Ed. Engl. 39 (2000)
4045–4047.
[15] G. Goluvkov, I. Bendix, H.B. Gray, A. Mahammed, I. Goldberg, A.J. DiBilio, Z. Gross,
Angew. Chem. Int. Ed. Engl. 40 (2001) 2132–2134.
[16] H.Y. Liu, T.S. Lai, L.L. Yeung, C.K. Chang, Org. Lett. 5 (2003) 617–620.
[17] H.Y. Liu, H. Zhou, L.Y. Liu, X. Ying, H.F. Jiang, C.K. Chang, Chem. Lett. 36 (2007)
274–275.
[18] S. Bose, A. Pariyar, A.N. Biswas, P. Das, P. Bandyopadhyay, J. Mol. Catal. A Chem.
332 (2010) 1–6.
[19] A.N. Biswas, P. Das, A. Agarwala, D. Bandyopadhyay, P. Bandyopadhyay, J. Mol.
Catal. A Chem. 326 (2010) 94–98.
[20] A.N. Biswas, A. Pariyar, S. Bose, P. Das, P. Bandyopadhyay, Catal. Commun. 11
(2010) 1008–1011.
[21] S. Bose, A. Pariyar, A.N. Biswas, P. Das, P. Bandyopadhyay, Catal Commun 12
(2011) 446–449.
Scheme 1. Manganese(III) corrole catalyzed oxidation of 2,4,6-tri-t-butylphenol.
The proposed route for the HAT process has been outlined in
Scheme 1. The (oxo)manganese(V) corrole generated in situ by the
reaction of manganese(III) corrole and peracid oxidizes the phenol
(TTBP), via a formal hydrogen-atom abstraction and itself converts to
MnIV–OH species. The involvement of similar species has been proposed
in case of the hydrogen-atom abstraction of phenols by high-valent
manganese(V)-oxo corrolazine [34]. The putative MnIV–OH species is
itself highly reactive [34] and abstracts a hydrogen atom from another
molecule of TTBP regenerating the manganese(III) corrole (Scheme 1).
An alternative mechanism that can account for the phenol oxidation in
the present case involves the disproportionation of the MnIV–OH
producing the Mn(III) catalyst and the (oxo)manganese(V) corrole, that
oxidizes the second phenol substrate. However, considering much
greater reactivity of the MnIV–OH species than (oxo)manganese(V)
species [34], this mechanistic pathway appears to be less favored.
[22] W.L.F. Armarego, D.D. Perrin, Purification of Laboratory Chemicals, 4th ed.;
Pergamon Press: Oxford, England, 1997.
[23] Z. Gross, N. Galili, I. Saltsman, Angew. Chem. Int. Ed. Engl. 38 (1999) 1427–1429.
[24] P. Stavropoulos, R.C. Cetin, A.E. Tapper, Acc. Chem. Res. 34 (2001) 745–752.
[25] K. Mitsukura, Y. Kondo, T. Yoshida, T. Nagasawa, Appl. Microbiol. Biotechnol. 71
(2006) 502–504.
4. Conclusion
[26] G. Huang, J. Luo, C. Cai, Y. Guo, G. Luo, Catal. Commun. 9 (2008) 1882–1885.
[27] A. Haber, A. Mahammed, B. Fuhrman, N. Volkova, R. Coleman, T. Hayek, M. Aviram,
Z. Gross, Angew. Chem. Int. Ed. Engl. 47 (2008) 7896–7900.
[28] L. Kupershmidt, Z. Okun, T. Amit, S. Mandel, I. Saltsman, A. Mahammed, O. Bar-Am,
Z. Gross, B.H. Youdim, J. Neurochem. 113 (2010) 363–373.
[29] A. Kumar, I. Goldberg, M. Botoshansky, Y. Buchman, Z. Gross, J. Am. Chem. Soc. 132
(2010) 15233–15245.
[30] A. Agarwala, V. Bagchi, D. Bandyopadhyay, J. Chem. Sci. 117 (2005) 187–191.
[31] T.G. Traylor, W.A. Lee, D.V. Stynes, J. Am. Chem. Soc. 106 (1984) 755–764.
[32] M. Yagi, M. Kaneko, Chem. Rev. 101 (2001) 21–36.
It has been demonstrated for the first time that high-valent
oxomanganese(V) corroles, generated from manganese(III) corroles,
are capable of oxygenating unactivated C―H bonds of alkanes and
alkylbenzenes. Adamantane undergoes exclusive hydroxylation and
shows a relatively high degree of selectivity for tertiary C―H bonds
over secondary C―H bonds (i.e., 3°/2°=7·5–8·7, normalized on a
per-hydrogen basis). Toluene, ethylbenzene and diphenylmethane
have also been found to be oxidized by the present catalytic system.
The oxomanganese(V) corrole, despite having low redox potential,
has been found to be capable of performing hydrogen atom transfer
[33] M.J. Zdilla, J.L. Dexheimer, M.M. Abu-Omar, J. Am. Chem. Soc. 129 (2007)
11505–11511.
[34] D.E. Lansky, D.P. Goldberg, Inorg. Chem. 45 (2006) 5119–5125.
[35] D.G. Lee, E.J. Lee, W.D. Chandler, J. Org. Chem. 50 (1985) 4306–4309.