Journal of the American Chemical Society
Article
(19) Park, J.; Morimoto, Y.; Lee, Y.-M.; Nam, W.; Fukuzumi, S. J.
Am. Chem. Soc. 2012, 134, 3903.
(20) Morimoto, Y.; Park, J.; Suenobu, T.; Lee, Y.-M.; Nam, W.;
(39) (a) Fukuzumi, S.; Nakanishi, I.; Tanaka, K.; Suenobu, T.;
Tabard, A.; Guilard, R.; Van Caemelbecke, E.; Kadish, K. M. J. Am.
Chem. Soc. 1999, 121, 785. (b) Fukuzumi, S.; Mochizuki, S.; Tanaka,
T. Inorg. Chem. 1989, 28, 2459.
Fukuzumi, S. Inorg. Chem. 2012, 51, 10025.
(21) (a) Fukuzumi, S.; Morimoto, Y.; Kotani, H.; Naumov, P.; Lee,
Y.-M.; Nam, W. Nature Chem. 2010, 2, 756. (b) Morimoto, Y.; Kotani,
H.; Park, J.; Lee, Y.-M.; Nam, W.; Fukuzumi, S. J. Am. Chem. Soc.
2011, 133, 403. (c) Park, J.; Morimoto, Y.; Lee, Y.-M.; Nam, W.;
Fukuzumi, S. J. Am. Chem. Soc. 2011, 133, 5236. (d) Park, J.;
Morimoto, Y.; Lee, Y.-M.; You, Y.; Nam, W.; Fukuzumi, S. Inorg.
Chem. 2011, 50, 11612.
(22) Bond dissociation energy (BDE) of acetonitrile is reported to be
96 1 kcal mol−1,23 which is significantly higher than those of toluene
derivatives (e.g., 88.5 kcal mol−1).24 In addition, the oxidation
potential of acetonitrile is much higher than those of toluene
derivatives. Indeed [(N4Py)FeIV(O)]2+ is stable in the absence and
presence of HClO4 in acetonitrile.
(40) The saturation behavior could be interpreted as an acid-
substrate complexation. However, it was confirmed that no
protonation of TMB occurred in the presence of HClO4 up to 20
mM (see Figure S7 in SI). Thus, the observed saturation behavior
results from a strong precursor complex rather than the protonation of
the substrate.
(41) Hubig, S. M.; Kochi, J. K. J. Am. Chem. Soc. 1999, 121, 1688.
(42) (a) Fukuzumi, S.; Mochida, K.; Kochi, J. K. J. Am. Chem. Soc.
1979, 101, 5961. (b) Fukuzumi, S.; Kochi, J. K. J. Am. Chem. Soc. 1980,
102, 2141. (c) Fukuzumi, S.; Kochi, J. K. J. Am. Chem. Soc. 1981, 103,
2783. (d) Fukuzumi, S.; Kochi, J. K. J. Am. Chem. Soc. 1981, 103, 7240.
(e) Fukuzumi, S.; Kochi, J. K. J. Am. Chem. Soc. 1982, 104, 7599.
(43) (a) Park, J. S.; Karnas, E.; Ohkubo, K.; Chen, P.; Kadish, K. M.;
Fukuzumi, S.; Bielawski, C. W.; Hudnall, T. W.; Lynch, V. M.; Sessler,
J. L. Science 2010, 329, 1324. (b) Fukuzumi, S.; Ohkubo, K.;
Kawashima, Y.; Kim, D. S.; Park, J.-S.; Jana, A.; Lynch, V. M.; Kim, D.-
H.; Sessler, J. L. J. Am. Chem. Soc. 2011, 133, 15938.
(23) Menon, A. S.; Henry, D. J.; Bally, T.; Radom, L. Org. Biomol.
Chem. 2011, 9, 3636.
(24) Kojima, T.; Nakayama, K.; Ikemura, K.; Ogura, T.; Fukuzumi, S.
J. Am. Chem. Soc. 2011, 133, 11692.
(25) Lee, Y.-M.; Kotani, H.; Suenobu, T.; Nam, W.; Fukuzumi, S. J.
Am. Chem. Soc. 2008, 130, 434.
(26) (a) Roelfes, G.; Vrajmasu, V.; Chen, K.; Ho, R. Y. N.; Rohde, J.-
U.; Zondervan, C.; la Crois, R. M.; Schudde, E. P.; Lutz, M.; Spek, A.
(44) (a) Fukuzumi, S.; Kochi, J. K. Tetrahedron 1982, 38, 1035.
(b) Kim, J. H.; Lindeman, S. V.; Kochi, J. K. J. Am. Chem. Soc. 2001,
123, 4951. (c) Fukuzumi, S.; Koumitsu, S.; Hironaka, K.; Tanaka, T. J.
Am. Chem. Soc. 1987, 109, 305. (d) Fukuzumi, S.; Nishizawa, N.;
Tanaka, T. J. Org. Chem. 1984, 49, 3571.
(45) (a) Zaman, K. M.; Yamamoto, S.; Nishimura, N.; Maruta, J.;
Fukuzumi, S. J. Am. Chem. Soc. 1994, 116, 12099. (b) Zhu, X.-Q.;
Zhang, J.-Y.; Cheng, J.-P. J. Org. Chem. 2006, 71, 7007. (c) Fukuzumi,
S.; Endo, Y.; Imahori, H. J. Am. Chem. Soc. 2002, 124, 10974. (d) Zhu,
X.-Q.; Li, X.-T.; Han, S.-H.; Mei, L.-R. J. Org. Chem. 2012, 77, 4774.
(46) (a) Fukuzumi, S.; Ohkubo, K.; Tokuda, Y.; Suenobu, T. J. Am.
Chem. Soc. 2000, 122, 4286. (b) Lu, Y.; Zhao, Y.; Handoo, K. L.;
Parker, V. D. Org. Biomol. Chem. 2003, 1, 173. (c) Ohkubo, K.;
Fukuzumi, S. J. Phys. Chem. A 2005, 109, 1105. (d) Le Magueres, P.;
Lindeman, S. V.; Kochi, J. K. Organometallics 2001, 20, 115.
(47) Kochi, J. K. Acc. Chem. Res. 1992, 25, 39.
L.; Hage, R.; Feringa, B. L.; Munck, E.; Que, L., Jr. Inorg. Chem. 2003,
̈
42, 2639. (b) Hong, S.; Lee, Y.-M.; Shin, W.; Fukuzumi, S.; Nam, W. J.
Am. Chem. Soc. 2009, 131, 13910.
(27) Fukuzumi, S.; Ishikawa, K.; Hironaka, K.; Tanaka, T. J. Chem.
Soc., Perkin Trans. 2 1987, 751.
(28) (a) Fukuzumi, S.; Kuroda, S. Res. Chem. Int. 1999, 25, 789.
(b) Fukuzumi, S.; Chiba, M.; Ishikawa, M.; Ishikawa, K.; Tanaka, T. J.
Chem. Soc., Perkin Trans. 2 1989, 1417. (c) Fukuzumi, S.; Ishikawa, M.;
Tanaka, T. Tetrahedron 1986, 42, 1021. (d) Fukuzumi, S.; Chiba, M.;
Tanaka, T. Chem. Lett. 1989, 31.
(29) Kwart, H. Acc. Chem. Res. 1982, 15, 401.
(30) (a) Price, J. C.; Barr, E. W.; Glass, T. E.; Krebs, C.; Bollinger, J.
M., Jr. J. Am. Chem. Soc. 2003, 125, 13008. (b) Wu, A.; Mayer, J. M. J.
Am. Chem. Soc. 2008, 130, 14745.
(48) Goodwin, J. A.; Wilson, L. J.; Stanbury, D. M.; Scott, R. A. Inorg.
Chem. 1988, 28, 42.
(31) (a) Kohen, A.; Klinman, J. P. Acc. Chem. Res. 1998, 31, 397.
(b) Knapp, M. J.; Rickert, K.; Klinman, J. P. J. Am. Chem. Soc. 2002,
124, 3865. (c) Klinman, J. P. Biochim. Biophys. Acta, Bioenergetics 2006,
1757, 981. (d) McCusker, K. P.; Kilnman, J. P. J. Am. Chem. Soc. 2010,
132, 5114.
(49) (a) Rosokha, S. V.; Kochi, J. K Acc. Chem. Res. 2008, 41, 641.
(b) Hubig, S. M.; Kochi, J. K. J. Am. Chem. Soc. 1999, 121, 1688.
(c) Gaede, W.; van Eldik, R. Inorg. Chem. 1994, 33, 2204.
(50) The saturation behavior of kf vs concentration of a substrate
may result from the competition between deprotonation of [(N4Py)
FeIV(OH)]3+ and the reaction with the substrate. In such a case, the
rate-determining step at the saturated would be the protonation of
[(N4Py)FeIV(O)]2+, when the rate constant would be independent of
the PCET driving force. The results in Figure 9, which exhibit a single
correlation between log kET vs −ΔGet, clearly indicate that the
saturation behavior in Figure 7 does not result from the change in the
rate-determining step to the protonation of [(N4Py)FeIV(O)]2+.
(51) For the classical definition of inner-sphere electron transfer, see:
(a) Taube, H.; Myers, H. J.; Rich, R. L. J. Am. Chem. Soc. 1953, 75,
4118. (b) Taube, H. Science 1984, 226, 1028.
(32) Fukuzumi, S.; Kobayashi, T.; Suenobu, T. J. Am. Chem. Soc.
2010, 132, 1496.
(33) Fukuzumi, S.; Ohkubo, K.; Suenobu, T.; Kato, K.; Fujitsuka, M.;
Ito, O. J. Am. Chem. Soc. 2001, 123, 8459.
(34) (a) Marcus, R. A. Annu. Rev. Phys. Chem. 1964, 15, 155.
(b) Marcus, R. A. Discuss. Faraday Soc. 1960, 29, 129. (c) Marcus, R.
A. Angew. Chem., Int. Ed. Engl. 1993, 32, 1111.
(35) (a) Cannon, R. D. Electron-Transfer Reactions; Butterworth:
London, 1980. (b) Eberson, L. Adv. Phys. Org. Chem. 1982, 18, 79.
(c) Silverstein, T. P. J. Chem. Educ. 2012, 89, 1159.
(36) (a) Sutin, N. Acc. Chem. Res. 1968, 1, 225. (b) Sutin, N. Adv.
Chem. Phys. 1999, 106, 7. (c) Chou, M.; Creutz, C.; Sutin, N. J. Am.
Chem. Soc. 1977, 99, 5615. (d) Keeney, L.; Hynes, M. J. Dalton Trans.
2005, 133.
(37) (a) Fukuzumi, S.; Honda, T.; Kojima, T. Coord. Chem. Rev.
2012, 256, 2488. (b) Fukuzumi, S.; Karlin, K. D. Coord. Chem. Rev.
2012, 257, 187. (c) Tahsini, L.; Kotani, H.; Lee, Y.-M.; Cho, J.; Nam,
W.; Karlin, K. D.; Fukuzumi, S. Chem.−Eur. J. 2012, 18, 1084.
(d) Yoon, H.; Morimoto, Y.; Lee, Y.-M.; Nam, W.; Fukuzumi, S.
Chem. Commun. 2012, 48, 11187.
(38) (a) Takai, A.; Gros, C. P.; Barbe, J.-M.; Guilard, R.; Fukuzumi,
S. Chem.−Eur. J. 2009, 15, 3110. (b) Nakanishi, T.; Ohkubo, K.;
Kojima, T.; Fukuzumi, S. J. Am. Chem. Soc. 2009, 131, 577.
(c) Murakami, M.; Ohkubo, K.; Fukuzumi, S. Chem.−Eur. J. 2010,
16, 7820.
(52) For more generalized distinction between the inner-sphere and
outer-sphere electron-transfer pathways, see: (a) Rosokha, S. V.;
Kochi, J. K. Acc. Chem. Res. 2008, 41, 641. (b) Fukuzumi, S.; Wong, C.
L.; Kochi, J. K. J. Am. Chem. Soc. 1980, 102, 2928. (c) Fukuzumi, S.;
Kochi, J. K. Bull. Chem. Soc. Jpn. 1983, 56, 969.
(53) The assumption that all reactivities at 10 mM HClO4 are
dominated by the monoprotonated species ([(N4Py)FeIV(OH)]3+) is
valid for oxidation of toluene derivatives with [FeIV(O)(N4Py)]2+ as
indicated by linear correlations between the kobs values and HClO4
concentration in Figure 2. In the case of PCET from inorganic one-
electron reductants to [FeIV(O)(N4Py)]2+, however, the diprotonated
species ([(N4Py)FeIV(OH2)]4+) may also be involved as indicated by
the contribution of the second-order dependence of kobs on [HClO4]
in Figure 5. At 10 mM HClO4, there is some contribution of [(N4Py)
FeIV(OH2)]4+ in PCET from inorganic one-electron reductants to
5060
dx.doi.org/10.1021/ja311662w | J. Am. Chem. Soc. 2013, 135, 5052−5061