Catalytic Activity and Structure Properties of Doped VOHPO4 ·0ꢂ5H2O with Nanosized Ru, Au, Fe and Mn
Makgwane and Ray
the doped-VHP catalysts, Ru/VHP exhibited excellent cat-
alytic performance and reusability after several consec-
utive testing. A benzene conversion of up to 76% at
85.5% total selectivity towards the formation of phenol and
hydroquinone was obtained using nanaosized doped Au-
VHP catalyst. Inversely, the Mn/VHP catalyst exhibited
low activity that indicated that the Mn promotion inhib-
ited the catalytic active sites of VHP catalyst. Based on
characterisation results, the influence induced by the dif-
ferent promoter metals electronic and structural properties
are proposed to be of importance to improve the VHP cata-
lyst catalytic performance probably related to the enhanced
10. D. Barbera, F. Cavani, T. D’Alessandro, G. Fornasari, S. Guidetti,
A. Aloise, G. Giordano, M. Piumetti, B. Bonelli, and C. Zanzottera,
J. Catal. 275, 158 (2010).
11. Y.-Y. Gu, X.-H. Zhao, G.-R. Zhang, H.-M. Ding, and Y.-K. Shan,
Appl. Catal. A: Gen. 328, 150 (2007).
12. S. Song, H. Yang, R. Rao, H. Liu, and A. Zhang, Appl. Catal. A:
Gen. 375, 265 (2010).
13. G. Centi and F. Trifiró, Chem. Rev. 88, 55 (1988).
14. K. Aï-Lachgar, M. Abon, and J. C. Volta, J. Catal. 171, 383 (1997).
15. E. Mikolajska, E. R. Garcia, R. López-Medina, A. E. Lewandowska,
J. L. G. Fierro, and M. A. Bañares, Appl. Catal. A: Gen. 404, 93
(2011).
16. G. C. Behera and K. M. Parida, Appl. Catal. A: Gen. 413–414, 245
(2012).
17. P. Borah, C. Pendem, and A. Datta, Stud. Surf. Sci. Catal. 175, 541
(2010).
V
+5/V+4 ratio. Moreover, the most significant finding with
the different promoted VHP catalysts was that, the metal
dopants in their nanosized particle forms allow improving
the VHP catalytic properties. The catalytic activity dis-
played by doped-VOHPO4 · 0ꢂ5H2O provide efficient cat-
alytic routes for conversion of several studied aromatics
into intermediates of important industrial application.
18. I. Sádaba, S. Lima, A. A. Valente, and M. López-Granados, Carbo-
hydr. Res. 46, 2785 (2011).
19. P. R. Makgwane, E. E. Ferg, D. G. W. Billing, and B. Zeelie, Catal.
Lett. 135, 105 (2010).
20. U. R. Pillai and E. Sahle-Demessie, New J. Chem. 27, 525 (2003).
21. P. R. Makgwane, N. I. Harmse, E. E. Ferg, and B. Zeelie, Chem.
Eng. J. 162, 341 (2010).
22. P. R. Makgwane, E. E. Ferg, and B. Zeelie, ChemCatChem 3, 180
(2011).
23. J. Liu, F. Wang, Z. Gu, and X. Xu, Chem. Eng. J. 151, 319 (2009).
24. A. Martin, U. Bentrup, and G.-U. Wolf, Appl. Catal. A: Gen.
227, 131 (2002).
Acknowledgments: Authors are grateful for the finan-
cial support from the University of Johannesburg and the
National Research Foundation (NRF) of South Africa. The
DST/CSIR National Centre for Nano-Structured Materials
is thanked for providing with research equipment to per-
form this work. Dr. Linda Prinsloo (University of Pretoria)
is thanked for helping Raman analysis.
25. Y. H. Taufiq-Yap, S. Nor Asrina, G. J. Hutchings, N. F. Dummer,
and J. K. Bartley, J. Natural Gas 162, 31 (1996).
26. M. Choi, C. Han, I. T. Kim, J. C. An, J. J. Lee, H. K. Lee, and
J. Shim, J. Nanosci. Nanotechnol. 11, 838 (2011).
27. K. Ki-Joong, S. Jae-Koon, S. Seong-Soo, K. Sang-Jun, C. Min-Chul,
J. Sang-Chul, J. Woon-Jo, and A. Ho-Geun, J. Nanosci. Nanotech-
nol. 11, 1605 (2011).
28. S, Bhattacharjee, J. S. Choi, S. T. Yang, S. B. Choi, J. Kim, and
W. S. Ahn, J. Nanosci. Nanotechnol. 10, 135 (2010).
29. C. J. Kiely, A. Burrows, S. Sajip, G. J. Hutchings, M. T. Sananes,
A. Tuel, and J.-C. Volta, J. Catal. 162, 31 (1996).
30. I. Hermans, P. A. Jacobs, and J. Peeters, Chem. Eur. J. 12, 4229
(2006).
31. J.-L. Li, X. Zhang, and X.-R. Huang, Phys. Chem. Chem. Phys.
14, 246 (2012).
32. J. K. Joseph, S. Singhal, S. L. Jain, R. Sivakumaran, B. Kumar, and
B. Sain, Catal. Today 141, 211 (2009).
33. Z. Sun, G. Li, L. Liu, and H. Liu, Catal. Commun. 27, 200 (2012).
34. M. S. Chen and D. W. Goodman, Catal. Today 111, 22 (2006).
35. R. Tanner, P. Gill, R. Wells, J. E. Bailie, G. Kelly, S. D. Jackson,
and G. J. Hutchings, Phys. Chem. Chem. Phys. 2, 688 (2002).
36. C.-C. Yang, Y.-J. Lee, and J. M. Yang, J. Power Sources 188, 30
(2009).
References and Notes
1. A. K. Suresh, M. M. Sharma, and T. Sridhar, Ind. Eng. Chem. Res.
39, 3958 (2000).
2. R. A. Sheldon and J. K. Kochi, Metal-Catalyzed Oxidation of
Organic Compounds, Academic Press, New York (1981).
3. X. Qi, J. Li, T. Ji, Y. Wang, L. Feng, Y. Zhu, X. Fan, and C. Zhang,
Microporous and Mesoporous Materials 122, 36 (2009).
4. S. Song, H. Yang, R. Rao, H. Liu, and A. Zhang, Catal. Commun.
11, 783 (2010).
5. R. A. Sheldon, Chem. Soc. Rev. 41, 1437 (2012).
6. R. J. Schmidt, Appl. Catal. A: Gen. 280, 89 (2005).
7. V. M. Zakoshansky, K. Griaznov, I. L. Vasilieva, J. W. Fulmer,
and W. D. Kight, Cumene oxidation process, US Patent 5.767,322
(1988).
8. Y. Leng, H. Ge, C. Zhou, and J. Wang, Chem. Eng. J. 145, 335 (2008).
9. C. A. Antonyraj and S. Kannan, Appl. Clay Sci. 53, 297 (2011).
Received: 31 October 2012. Accepted: 15 January 2013.
5060
J. Nanosci. Nanotechnol. 13, 5053–5060, 2013