RSC Advances
Paper
59 G. D. Kang and Y. M. Cao, Development of antifouling
reverse osmosis membranes for water treatment: A review,
Water Res., 2012, 46(3), 584–600.
60 X. Zhu, R. Bai, K. H. Wee, et al., Membrane surfaces
immobilized with ionic or reduced silver and their anti-
biofouling performances, J. Membr. Sci., 2010, 363(1–2),
278–286.
and forward osmosis membranes based on layer-by-layer
assembly, Water Res., 2013, 47(9), 3081–3092.
74 S. Liu, F. Fang, J. Wu, et al., The anti-biofouling properties of
thin-lm composite nanoltration membranes graed with
biogenic silver nanoparticles, Desalination, 2015, 375, 121–
128.
75 J. Wu, C. Yu and Q. Li, Novel regenerable antimicrobial
nanocomposite membranes: Effect of silver loading and
valence state, J. Membr. Sci., 2017, 531, 68–76.
61 S. H. Kim, S. Y. Kwak, B. H. Sohn, et al., Design of TiO2
nanoparticle self-assembled aromatic polyamide thin-lm-
composite (TFC) membrane as an approach to solve 76 Z. Yang, Y. Wu, H. Guo, et al., A novel thin-lm nano-
biofouling problem, J. Membr. Sci., 2003, 211(1), 157–165.
62 T. Shintani, H. Matsuyama and N. Kurata, Effect of heat
treatment on performance of chlorine-resistant polyamide
reverse osmosis membranes, Desalination, 2009, 247(1–3),
370–377.
63 S. T. Weinman and S. M. Husson, Inuence of chemical
coating combined with nanopatterning on alginate fouling
during nanoltration, J. Membr. Sci., 2016, 513(suppl. C),
146–154.
64 Y. Zhou, et al., Surface modication of thin lm composite
polyamide membranes by electrostatic self deposition of
polycations for improved fouling resistance, Sep. Purif.
Technol., 2009, 66(2), 287–294.
templated composite membrane with in situ silver
nanoparticles loading: separation performance
enhancement and implications, J. Membr. Sci., 2017, 544,
351–358.
77 T. Kawaguchi and H. Tamura, Chorine-resistance
membrane for reverse osmosis: 1 Correlation between
chemical structures and chlorine resistance of polyamides,
J. Appl. Polym. Sci., 1984, 29, 3359–3367.
78 J. Koo, R. J. Peterson and J. E. Cadotte, ESCA characterization
of chlorine damaged polyamide reverse osmosis membrane,
ACS Polymer Preprints, Division of Polymer Chemistry, 1986,
27, 391–392.
79 K. Nita, Y. Matsui, et al., in ICOM’90, Chicago, 1990, p. 1055.
65 T. Shintani, H. Matsuyama and N. Kurata, Effect of heat 80 X. Zhao, Y. He, Z. Wu and Z. Cai, Chlorine-resistant
treatment on performance of chlorine-resistant polyamide
reverse osmosis membranes, Desalination, 2009, 247(1–3),
370–377.
composite reverse osmosis membrane, CN Pat.
101130155A, 2008.
81 A. P. Murphy, B. Murugaverl and R. L. Riley, Chlorine
resistant polyamides and membranes made from the
same, USPTO Application #: 20080277333, 2008.
66 S. Y. Lee, H. J. Kim, R. Patel, et al., Silver nanoparticles
immobilized on thin lm composite polyamide
¨
membrane: characterization, nanoltration, antifouling 82 S. Yu, M. Liu, Z. Lu, et al., Aromatic-cycloaliphatic thin-lm
properties, Polym. Adv. Technol., 2007, 18(7), 562–568.
67 S. H. Kim, S. Y. Kwak, B. H. Sohn, et al., Design of TiO2
nanoparticle self-assembled aromatic polyamide thin-lm-
composite (TFC) membrane as an approach to solve
biofouling problem, J. Membr. Sci., 2003, 211(1), 157–165.
68 C. Dong, Z. Wang, J. Wu, et al., A green strategy to
immobilize silver nanoparticles onto reverse osmosis
composite membrane with improved chlorine resistance
prepared from m-phenylenediamine-4-methyl and
cyclohexane-1,3,5-tricarbonyl chloride, J. Membr. Sci., 2009,
344, 155–164.
83 S. Takuji, M. Hideto and K. Naoki, Development of
a chlorine-resistant polyamide reverse osmosis membrane,
Desalination, 2007, 207, 340–348.
membrane for enhanced anti-biofouling property, 84 S. Takuji, M. Hideto and K. Naoki, Effect of heat treatment
Desalination, 2017, 401, 32–41.
on performance of chlorine-resistant polyamide reverse
69 S. H. Sonawane, A. Terrien, A. S. Figueiredo, et al., The role of
osmosis membranes, Desalination, 2009, 247, 370–377.
silver nanoparticles on mixed matrix Ag/cellulose acetate 85 L.-F. Liu, D.-Z. XU, H.-L. Chen and C.-J. Gao, A novel
asymmetric membranes, Polym. Compos., 2017, 38(1), 32–39.
70 W. L. Chou, D. G. Yu and M. C. Yang, The preparation and
characterization of silver-loading cellulose acetate hollow
ber membrane for water treatment, Polym. Adv. Technol.,
2010, 16(8), 600–607.
polyamide-urea-imide
membrane prepared
polymerization, Journal of Chemistry and Engineering, 2012,
63, 1913–1921.
composite
reverse
two-step
osmosis
interfacial
via
86 G.-D. Kang, C.-J. Gao, W.-D. Chen, et al., Study on
hypochlorite degradation of aromatic polyamide reverse
osmosis membrane, J. Membr. Sci., 2007, 300, 165–171.
71 M. Ben-Sasson, X. Lu, E. Bar-Zeev, et al., In situ formation of
silver nanoparticles on thin-lm composite reverse osmosis
membranes for biofouling mitigation, Water Res., 2014, 62, 87 Y. K. Kim, S. Y. Lee, D. H. Kim, et al., Preparation and
260–270.
characterization of the thermally crosslinked chlorine
resistant thin lm composite polyamide membrane for
reverse osmosis, Desalination, 2010, 250, 865–867.
72 Z. Yang, Y. Wu, J. Wang, et al., In situ reduction of silver by
polydopamine:
A novel antimicrobial modication of
a thin-lm composite polyamide membrane, Environ. Sci. 88 X. Wei, Z. Wang, J. Chen, et al., A novel method of surface
Technol., 2016, 50(17), 9543–9550.
73 X. Liu, S. Qi, Y. Li, et al., Synthesis and characterization of
novel antibacterial silver nanocomposite nanoltration
modication on thin-lm-composite reverse osmosis
membrane by graing hydantoin derivative, J. Membr. Sci.,
2010, 346, 152–162.
37826 | RSC Adv., 2018, 8, 37817–37827
This journal is © The Royal Society of Chemistry 2018