S. Das et al. / Tetrahedron Letters 44 (2003) 4915–4917
2. Dickman, M. H. Chem. Rev. 1994, 94, 569.
4917
direct reflection of the CꢀH bond strength (entries 1–3,
Table 2). In the case of allylbenzene no double bond
oxidation was observed. Similarly, methyl phenylac-
etate afforded the corresponding a-keto ester selectively
as the product, no oxidative cleavage being observed
(entry 6, Table 2).
3. (a) Barton, D. H. R.; Beviere, S. D.; Chavasiri, W.;
Csuhai, E.; Doller, D. Tetrahedron 1992, 48, 2895; (b)
Faraj, M.; Hill, C. L. Chem. Commun. 1987, 1487; (c)
Murahashi, S.-I.; Oda, Y.; Naota, T.; Komiya, N. Chem.
Commun. 1993, 139; (d) Tateiwa, J.-I.; Horiuchi, H.;
Uemura, S. Chem. Commun. 1994, 2567; (e) Dura-Vila, V.;
Mingos, D. M. P.; Vilar, R.; White, A. J. P.; Williams, D.
J. Chem. Commun. 2000, 1525; (f) Elemans, J. A. A. W.;
Bijsterveld, E. J. A.; Rowan, A. E.; Nolte, R. J. M. Chem.
Commun. 2000, 2443; (g) Zhou, X.-G.; Yu, X.-Q.; Huang,
J.-S.; Li, S.-G.; Li, L.-S.; Che, C.-M. Chem. Commun.
1999, 1789; (h) Yoshida, H.; Murata, C.; Hattori, T.
Chem. Commun. 1999, 1551.
Notably, the yields of the oxidized products were sig-
nificantly reduced when the reactions were carried out
under a nitrogen atmosphere. Additionally, the oxida-
tion of diphenylmethanol was carried out separately
and benzophenone (90%) was obtained. This study
suggested that the ketones produced in the oxidation of
the substrates having secondary CꢀH bonds are derived
from in situ oxidation of the respective secondary
alcohols.
4. Groves, J. T.; Krishnan, S.; Avaria, G. E.; Nemo, T. J.
Adv. Chem. Ser. 1980, 191, 277.
5. Bandyopadhyay, R.; Biswas, S.; Guha, S.; Mukherjee, A.
K.; Bhattacharyya, R. Chem. Commun. 1999, 1627.
6. Preparation of 1. MoO3 (22.22 mmol) was dissolved in
30% H2O2 (220 mmol). The solution was cooled in an
ice-bath and then dmpz (44.93 mmol) was added in por-
tions. A red suspension was obtained at this stage which
was stirred for 1 h and then left overnight at ca. 4°C to
afford a lemon yellow colored microcrystalline complex,
[MoO(O2)2(dmpz)2] 1, in 57% yield. Mp 91°C; IR(KBr)
w/cm−1: 935 (MoꢁO), 882 (O-O), 592 (Mo-O2, sym.), 665
(MoꢁO2, asym.), 1568 (C-N), 3323, (N-H), 303 (Mo-N);8
Raman (KBr) w/cm−1: 956 (MoꢁO), 886 (O-O), 320 (Mo-
N), 674 (Mo-O2, asym), 595 (Mo-O2, sym); electronic
In conclusion, the studies described herein indicate that
the molybdenum complex 1 catalyses the oxidation of
alkylbenzenes in the presence of hydrogen peroxide
under atmospheric oxygen in moderate to good yields.
The system is mild and selective in so far as benzylic
CꢀH bond oxidation is concerned. Further investiga-
tion is in progress to determine the detailed mechanism
and the exact chemical nature of the active oxidant in
these oxidations.
References
spectrum9 u/nm: 332 (p*n ds*), 216 (ph*ds*). Anal. calcd
1. (a) Sheldon, R. A.; Kochi, J. K. Metal Catalyzed Oxida-
tion of Organic Compounds; Academic Press: New York,
1991; (b) Mimoun, H. In Comprehensive Coordination
Chemistry; Wilkinson, G.; Gillard, R. D.; McCleverty, J.
A., Eds.; Pergamon Press: Oxford, 1987; Vol. 6; (c) Notari,
B. Catal. Today 1993, 18, 163; (d) Reddy, J. S.; Khire, U.
R.; Ratnasamy, P.; Mitra, R. B. Chem. Commun. 1992,
1234; (e) Butler, A.; Clague, M. J.; Meister, G. E. Chem.
Rev. 1994, 94, 625; (f) Jacobson, S. E.; Tang, R.; Mares, F.
Chem. Commun. 1978, 888; (g) Campestrini, S.; Furia, F.
D. J. Mol. Catal. 1993, 79, 13; (h) Herrmann, W. A.;
Fischer, R. W.; Correia, J. D. G. J. Mol. Catal 1994, 94,
213; (i) Aubry, J.-M.; Bouttemy, S. J. Am. Chem. Soc.
1997, 119, 5286; (j) Shilov, A. E.; Shul’pin, G. B. Chem.
Rev. 1997, 97, 2879; (k) Nizova, G. V.; Krebs, B.; Suess-
Fink, G.; Schindler, S.; Westerheide, L.; Cuervp, L. G.;
Shul’pin, G. B. Tetrahedron 2002, 58, 9231; (l) Shulp’pin,
G. B.; Nizova, G. V.; Kozlov, Y. N.; Pechenkina, I. G.
New J. Chem. 2002, 26, 1238.
2−
for C10H16O5N4Mo: C, 32.62; H, 4.39; N, 15.21; O2
,
17.38; Mo, 26.05. Found: C, 32.39; H, 4.58; N, 15.15;
O22−, 16.89; Mo, 26.40.
7. Alkylbenzene (1 mmol), MoO(O2)2(dmpz)2 1 (5 mol%) and
hydrogen peroxide (30%, 40 mmol) were dissolved in
acetonitrile (1 ml) and the homogeneous solution was
heated at ca. 80°C under atmospheric oxygen for the
appropriate time (see Table 2). The products were then
either identified by GC analysis or the aqueous CH3CN
was removed on a rotary evaporator and the residue was
passed through a short pad of silica gel using a mixture of
ethyl acetate and hexane as eluent to afford the corre-
sponding alcohols and ketones.
8. Turner, H. W.; Anderson, R. A.; Zalkin, A.; Templeton,
D. H. Inorg. Chem. 1979, 18, 1221.
9. (a) Lever, A. B. P.; Gray, H. B. Acc. Chem. Res. 1978, 1,
348; (b) Bhattacharjee, M.; Chaudhuri, M. K.; Islam, N.
S.; Paul, P. C. Inorg. Chim. Acta 1990, 169, 97.