5
976
B. M. Coleridge et al. / Tetrahedron Letters 51 (2010) 5973–5976
1
2. Stepanenko, V.; Ortiz-Marcailes, M.; Correa, W.; De Jesus, M.; Espinosa, S.;
Acknowledgments
Ortiz, L. Tetrahedron: Asymmetry 2006, 17, 112–115; Huang, K.; Merced, F. G.;
Ortiz-Marcailes, M.; Melendez, H. J.; Correa, W.; De Jesús, M. J. Org. Chem. 2008,
73, 4017–4026; Stepanenko, V.; De Jesús, M.; Correa, W.; Bermúdez, L.;
Vázquez, C.; Guzmán, I.; Ortiz-Marciales, M. Tetrahedron: Asymmetry 2009, 23,
We gratefully acknowledge Mr. Charles S. Bello for GC analysis
of products and Dr. Christopher D. Hewitt and Dr. Lauren R. Cafiero
for helpful discussions.
2659–2665; Huang, K.; Ortiz-Marcailes, M.; Correa, W.; Pomales, E.; Lopez, X.
Y. J. Org. Chem. 2009, 74, 4195–4202.
13. Fu, R.; Zhao, B.; Shi, Y. J. Org. Chem. 2009, 74, 7577–7580; Bannister, R. M.;
Brooks, M. H.; Evans, G. R.; Katz, R. B.; Tyrrell, N. D. Org. Process Res. Dev. 2000,
Supplementary data
4
, 467.
1
4. Roeske, R. W.; Weitl, F. L.; Prasad, K. U.; Thompson, R. M. J. Org. Chem. 1976, 41,
1260–1261.
5. Brown, H. C.; Kanth, J. V. B.; Zaidlewicz, M. J. Org. Chem. 1998, 63, 5154–5163;
Brown, H. C.; Kanth, J. V. B.; Dalvi, P. V.; Zaidlewicz, M. J. Org. Chem. 1999, 64,
1
6
263–6274; Kanth, J. V. B. Aldrichim. Acta 2002, 35, 51–58; Salunkhe, A. M.;
References and notes
Burkhardt, E. R. Tetrahedron Lett. 1997, 38, 1519–1522.
6. Haddenham, D.; Pasumansky, L.; DeSoto, J.; Eagon, S.; Singaram, B. J. Org. Chem.
2009, 74, 1964–1970.
1
1.
2.
3.
Seyden-Penne, J. Reduction by the Alumino- and Borohydrides in Organic
Synthesis, 2nd ed.; Wiley-VCH: New York, 1997.
Pasumansky, L.; Goralski, C. T.; Singaram, B. Org. Process Res. Dev. 2006, 10,
17. Brown, H. C.; Krishnamurthy, S. Tetrahedron 1979, 35, 567–607.
11
18.
B NMR resonances expected based on the corresponding resonances of
9
59–970.
morpholinoborane at 0.7 ppm (t, J = 113 Hz) and bis(morpholino)diborane at
3 ppm (t, J = 115 Hz). Bis(dimethylamino)borane is at 32 ppm (d, J = 130 Hz)
and dimer is at 1.6 (t, J = 67 Hz).
Agbodjan, A. A.; Cooley, B. E.; Copley, R. C. B.; Corfield, J. A.; Flanagan, R. C.;
Glover, B. N.; Guidetti, R.; Haigh, D.; Howes, P. D.; Jackson, M. M.; Matsuoka, R.
T.; Medhurst, K. J.; Millar, A.; Sharp, M. J.; Slater, M. J.; Toczko, J. F.; Xie, S. J. Org.
Chem. 2008, 73, 3094–3102; Flanagan, R. C.; Xie, S.; Millar, A. Org. Process Res.
Dev. 2008, 12, 1307–1312.
19. Burg, A. B.; Randolph, C. L., Jr. J. Am. Chem. Soc. 1949, 71, 3451–3455; Balulescu,
C. R.; Keller, P. C. Inorg. Chem. 1978, 17, 3707–3708; BASF data:
Morpholinodiborane À18.3 (br t, J = 142 Hz), Schwartz, L. D.; Keller, P. C. J.
Am. Chem. Soc. 1972, 94, 3015–3019. dialkylaminodiborane at À18 to À21
(J = 130, 30 Hz).
4
.
Hida, T.; Mitsumori, S.; Homa, T.; Hiramatsu, Y.; Hashizume, H.; Okada, T.;
Kakinuma, M.; Kawata, K.; Oda, K.; Hasegawa, A.; Masui, T.; Nogusa, H. Org.
Process Res. Dev. 2009, 13, 1413–1418.
20. Catechol borane 11B NMR resonance is 28 ppm (d, J = 190 Hz), BASF internal
data.
5
6
.
.
Brown, H. C. Hydroboration; W.A. Benjamin: New York, 1962.
Saito, S.; Hasegawa, T.; Inaba, M.; Nishida, R.; Fuji, T.; Nomizu, S.; Moriwake, T.
Chem. Lett. 1984, 13, 1389–1392.
21. Joshi, N. N.; Srebnik, M.; Brown, H. C. Tetrahedron Lett. 1989, 30, 5551–5554.
22. Corey, E. J. J. Am. Chem. Soc. 1987, 109, 5551–5553; Corey assigned
oxazaborolidine monomer at 28.3 ppm as broad singlet and dimer at
7.6 ppm as doublet (J = 130 Hz) but this coupling constant is inconsistant for
a boron bridged hydrogen (J = 30–50 Hz), see: Noeth, H.; Wrackmeyer, B.
Nuclear Magnetic Resonance Spectroscopy of Boron Compounds; Springer: Berlin,
1978.
7
.
.
Bryans, J. S.; Large, J. M.; Parsons, A. F. J. Chem. Soc., Perkin Trans. 1 1999, 2905–
2
910.
8
Salunkhe, A. M.; Burkhardt, E. R. Tetrahedron Lett. 1997, 38, 1523–1526; Cho, B.
T.; Shun, Y. S. Bull. Korean Chem. Soc. 1999, 20, 397–399; Chung, J. Y. L.;
Cvetovich, R.; Amato, J.; McWilliams, J. C.; Reamer, R.; DiMicheke, L. J. Org.
Chem. 2005, 70, 3592–3601; Bertrand, B.; Durrassier, S.; Frein, S.; Burgos, A.
Tetrahedron Lett. 2007, 48, 2123–2125.
23. Presence of catecholborane was confirmed by B–H stretching band in the IR
À1
spectrum at 2656 cm
.
9
.
Salunkhe, A. M.; Burkhardt, E. R. Tetrahedron Lett. 1997, 38, 1519–1522.
24. Brunel, J. M.; Maffei, M.; Buono, G. Tetrahedron: Asymmetry 1993, 4, 2255–
2260. The oxazaborolidine–borane adduct 11B NMR peak corresponding to the
amine borane would be hidden by resonance of DEANB.
25. Tlahuext, H.; Contreras, R. Tetrahedron: Asymmetry 1992, 3, 1145–1148.
26. Use of SpiroCAT with DMSB or BTHF also dramatically accelerates ester
reduction at rt.
1
0. Linney, L. P.; Self, C. R.; Williams, I. H. J. Chem. Soc., Chem. Commun. 1994, 14,
651–1652; Jones, D. K.; Liotta, D. C.; Shinkai, I.; Mathre, D. J. J. Org. Chem. 1993,
8, 799–801.
1
5
1
1. 2-Aminoethanol with 2 equiv of borane was shown to rapidly reduce ketones
but not esters or amides. Istuno, S.; Wakasugi, T.; Ito, K.; Hirao, A.; Nakahama,
S. Bull. Chem. Soc. Jpn. 1985, 58, 1669–1673.