Acknowledgments
Financial support from the Funda c¸ a˜ o de Amparo a` Pesquisa
do Estado de S a˜ o Paulo (FAPESP) (Grants 97/ 01545-6, 97/
0
0758-6, 95/ 9497-5, and 97/ 6172-3) and the Conselho Na-
cional de Desenvolvimento Cientifico e Tecnol o´ gico (CNPq)
are greatly acknowledged.
Literature Cited
(
(
(
(
1) Lutz, M.; Davidson, S.; Stowe, D. Water Environ. Technol. 1995,
, 52-57.
2) Bonnin, C.; Laborie, A.; Paillard H. Water Sci. Technol. 1990, 22,
5-74.
3) Hwang, Y.; Matsuo, T.; Hanaki, K.; Suzuki, N. Water Res. 1995,
9, 711-718.
6
6
2
4) Young, W. F.; Horth, H.; Crane, R.; Ogden, T.; Arnott, M. Water
Res. 1996, 30, 331-340.
(
(
5) Mills, B. Filtration Separation 1995, 02, 147-152.
6) Hoffman, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W.
Chem. Rev. 1995, 95, 69-96.
(
(
7) Mills, A.; Hunte, S. L. J. Photochem. Photobiol., A 1997, 108,
1
-35.
8) Alberici, R. M.; Jardim, W. F. Appl. Catal., B 1997, 14, 55-68.
FIGURE 5. Performance of the TiO
of propylene sulfide (w hite) and trimethylene sulfide (black) as
monitored by GC-FID and sensory analysis: nd ) not detectable.
2
/UV process in the destruction
(9) Dibble, L. A.; Raupp, G. B. Environ. Sci. Technol. 1992, 26, 492-
495.
(
(
10) Peral, J.; Ollis, D. F. J. Catal. 1992, 136, 554-565.
11) Suzuki, K.; Satoh, S.; Yoshida, T. Denki Kagaku 1991, 59, 521-
5
23.
1
). Long known for its high reactivity, this species can attack
(
12) Suzuki, K. In Photocatalytic Air Purification on TiO Coated
2
the sulfur-containing organic compounds generating the
oxidation products as sulfoxides and sulfones. In another
way (step 2), the photogenerated hole localized at the surface
of the irradiated semiconductor is trapped by an adsorbed
sulfur-containing organic compound, generating an adsorbed
cation radical. The formation of a sulfur radical cation has
been previously reported by Davidson and Pratt (27) and
Fox and Abdel-Wahab (28, 29) in the presence of oxidatively
inert solvents. In the experimental conditions used in this
work it was not possible to detect either sulfoxides or sulfones
Honeycomb Support; Ollis, D. F., Al-Ekabi, H., Eds.; Elsevier:
Amsterdan; 1993; Photocatalytic Purification and Treatment of
Water and Air, Vol. 3, p 421.
(
(
(
13) Canela, M. C.; Alberici, R. M.; Jardim, W. F. J. Photochem.
Photobiol., A 1998, 112, 73-80.
14) Lu, G.; Linsebigler, A. L.; Yates, J. T., Jr. J. Phys. Chem. 1995, 99,
7
626-7631.
15) Lu, G.; Linsebigler, A. L.; Yates, J. T., Jr. J. Chem. Phys. 1995, 102,
4657-4662.
(16) Raupp, G. B.; Junio, C. T. Appl. Surf. Sci. 1993, 72, 321-327.
17) Wong, J. C. S.; Linsebigler, A. L.; Lu, G.; Fan, J.; Yates, J. T., Jr.
J. Phys. Chem. 1995, 99, 335-344.
18) Juliano, V. F.; Gozzo, F. C.; Eberlin, M. N.; Kascheres, C. Anal.
Chem. 1996, 68, 1328-1334.
19) Eberlin M. N. Mass Spectrom. Rev. 1997, 16, 113-144.
20) Standard Methods for the Examination of Water and Wastewater,
18th ed.; Greenberg, A. S., Clesceri, I. S., Eaton, A. D., Eds.;
American Public Health Association: Washington, DC, 2.19-
(
(
intermediates) because gas-phase reactions are very fast,
(
2
-
generating as final products SO
mass balance.
2
and SO
4
as shown by the
(
(
Although sulfate ions formed during the photocatalytic
process were adsorbed onto the catalyst surface, no catalytic
deactivation was observed in these experiments. Using H
Canela et al. (13) showed that sulfate ions adsorbed onto
TiO promoted a decrease in the photocatalytic activity when
2
S,
2
SO
.23 (section 2170, Flavor Profile Analysis), 4.126-4.132 (4500-
4
2
-
), 1992.
2
(
(
21) West, P. W.; Gaeke, G. C. Anal. Chem. 1956, 28, 1816-1819.
22) Jardim, W. F.; Guimar a˜ es, J. R.; Allen, H. E. Ci eˆ ncia Cultura
high concentrations of H
2
S (600 ppmv; corresponding to 5.4
) were used. However, at 217 ppmv (1.9
) of H S, the photocatalytic activity was
-
1
2-
2-
µmol min of SO
4
4
1
991, 43, 454-456.
-
1
µmol min of SO
2
(23) Dam a´ sio, M. H.; Costell, E. Rev. Agroqu ´ı m. Tecnol. Aliment. 1991,
31, 165-178.
24) Bush, K. L.; Glish, G. L.; McLuckey, S. A. Mass Spectrometry/
Mass Spectrometry Techniques and Applications of Tandem Mass
Spectrometry; VCH Publishers: 1989.
25) Sparrapan, R.; Mendes, M. A.; Ferreira, I. P. P.; Eberlin, M. N.;
Santos, C.; Nogueira, J. C. J. Phys. Chem. A. 1998, 102, 5189-
5195.
maintained for 24 h of continuous use. For all the sulfur-
(
containing compounds tested in the present work, the
-
1
maximum sulfate ions load observed was 1.58 µmol min
,
as shown in Table 2.
(
A comparative performance of the analytical technique
used to monitor the target compounds (GC-FID) versus the
sensory analysis is shown in Figure 5. Both GC-FID and
sensory analysis indicate that the photocatalytic process was
efficient to destroy the malodorous compounds. The panelists
were unable to detect odor for both methylene sulfide and
propylene sulfide in the outlet reactor, within 60 min after
of the irradiation. On the other hand, using chromatographic
analysis, after 15 min, it was not possible to detect the target
compound in the outlet reactor. This result emphasizes the
importance of sensory analysis in the evaluation process of
destruction of malodorous compounds.
(26) Peral, J.; Ollis, D. F. J. Mol. Catal. A 1997, 115, 347-354.
(27) Davidson, R. S.; Pratt, J. E. Tetrahedron Lett. 1983, 24, 5903-
5
906.
28) Fox, M. A.; Abdel-Wahab, A. A. Tetrahedron Lett. 1990, 31, 4533-
536.
29) Fox, M. A.; Abdel-Wahab, A. A. J. Catal. 1990, 126, 693-696.
(
(
4
Received for review April 20, 1998. Revised manuscript re-
ceived April 30, 1999. Accepted May 20, 1999.
ES980404F
2
7 9 2
9
ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 33, NO. 16, 1999