The Journal of Organic Chemistry
Article
In a typical experiment, 5 mL of an argon saturated dichloromethane
A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem.
Rev. 2010, 110, 890−931.
solution containing the substrate, CumOH, DIB, and I , was
2
introduced into a pyrex glass vessel equipped with an external jacket
for water circulation. The reaction mixture was then irradiated with
visible light at T = 20 °C employing a photochemical reactor equipped
with 8 × 15 W lamps. At the end of the irradiation, the solution was
(6) (a) Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M.
L. Nature 2016, 533, 230−234. (b) Fu, L.; Guptill, D. M.; Davies, H.
M. L. J. Am. Chem. Soc. 2016, 138, 5761−5764.
(7) Cook, A. K.; Schimler, S. D.; Matzger, A. J.; Sanford, M. S. Science
2016, 351, 1421−1424.
added to 10 mL of H O and then extracted with dichloromethane (3
2
×
10 mL). The organic extracts were washed with a 10% sodium
(
́
8) Smith, K. T.; Berritt, S.; Gonzalez-Moreias, M.; Ahn, S.; Smith,
thiosulfate solution and dried over Na SO . All the preparation and
2
4
M. R., III; Baik, M.-H.; Mindiola, D. J. Science 2016, 351, 1424−1427.
workup procedures were carried out limiting exposure of the solution
to light. Reaction products were identified by GC and GC-MS by
comparison with authentic samples and quantified by GC employing
(9) (a) Zhang, F.-L.; Hong, K.; Li, T.-J.; Park, H.; Yu, J.-Q. Science
2
016, 351, 252−256. (b) Li, S.; Zhu, R.-Y.; Xiao, K.-J.; Yu, J.-Q. Angew.
Chem., Int. Ed. 2016, 55, 4317−4321. (c) Jiang, H.; He, J.; Liu, T.; Yu,
J.-Q. J. Am. Chem. Soc. 2016, 138, 2055−2059.
(
1,2-diphenylethane (bibenzyl) as internal standard. With both COT
and DBE, no product formation was observed in the absence of
irradiation by leaving the reaction mixtures in the dark for at least 1 h.
Reaction of CumO• with COT. When COT (5.0 mmol) and
CumOH (0.50 mmol) were irradiated for 30 min in the presence of
10) (a) Topczewski, J. J.; Cabrera, P. J.; Saper, N. I.; Sanford, M. S.
Nature 2016, 531, 220−224. (b) Neufeldt, S. R.; Sanford, M. S. Acc.
Chem. Res. 2012, 45, 936−946. (c) Lyons, T. W.; Sanford, M. S. Chem.
Rev. 2010, 110, 1147−1169.
DIB (1.10 mmol) and I (0.55 mmol), formation of COTOAc (0.09
2
(
11) (a) Huang, Z.; Wang, C.; Dong, G. Angew. Chem., Int. Ed. 2016,
5, 5299−5303. (b) Ozawa, J.; Tashiro, M.; Ni, J.; Oisaki, K.; Kanai,
M. Chem. Sci. 2016, 7, 1904−1909.
12) Lewis, J. C.; Coelho, P. S.; Arnold, F. H. Chem. Soc. Rev. 2011,
0, 2003−2021.
13) (a) Narayan, A. R. H.; Jimen
mmol) and PhCOCH (0.06 mmol) was observed. When the reaction
3
5
of COT (2.0 mmol) was carried out under identical conditions in the
presence of TFA (0.28 mmol) and PMP (0.27 mmol), formation of
(
4
COTOAc (0.05 mmol) and PhCOCH (0.12 mmol) was observed.
3
PMP was recovered quantitatively (0.27 mmol) from the irradiated
(
́ ́
ez-Oses, G.; Liu, P.; Negretti, S.;
reaction mixture.
Reaction of CumO• with DBE. When DBE (1.0 mmol) and
Zhao, W.; Gilbert, M. M.; Ramabhadran, R. O.; Yang, Y.-F.; Furan, L.
R.; Li, Z.; Podust, L. M.; Montgomery, J.; Houk, K. N.; Sherman, D.
H. Nat. Chem. 2015, 7, 653−660. (b) Negretti, S.; Narayan, A. R. H.;
Chiou, K. C.; Kells, P. M.; Stachowski, J. L.; Hansen, D. A.; Podust, L.
M.; Montgomery, J.; Sherman, D. H. J. Am. Chem. Soc. 2014, 136,
4901−4904.
CumOH (0.50 mmol) were irradiated for 30 min in the presence of
DIB (1.10 mmol) and I (0.55 mmol), formation of PhCHO (0.34
2
mmol), PhCH OH (0.08 mmol) and PhCOCH (0.14 mmol) was
2
3
observed. When the same reaction was carried out in the presence of
TFA (0.55 mmol) and PMP (0.50 mmol), formation of PhCHO (0.22
mmol), PhCH OH (0.06 mmol), and PhCOCH (0.15 mmol) was
(14) (a) Roiban, G.-D.; Reetz, M. T. Chem. Commun. 2015, 51,
2208−2224. (b) Roiban, G.-D.; Agudo, R.; Reetz, M. T. Angew. Chem.,
Int. Ed. 2014, 53, 8659−8663. (c) Kille, S.; Zilly, F. E.; Acevedo, J. P.;
Reetz, M. T. Nat. Chem. 2011, 3, 738−743.
(15) Rydzik, A. M.; Leung, I. K. H.; Kochan, G. T.; McDonough, M.
A.; Claridge, T. D. W.; Schofield, C. J. Angew. Chem., Int. Ed. 2014, 53,
2
3
observed. PMP was recovered quantitatively (0.49 mmol) from the
irradiated reaction mixture.
ASSOCIATED CONTENT
Supporting Information
■
*
S
1
0925−10927.
16) (a) Font, D.; Canta, M.; Milan, M.; Cusso,
Gebbink, R. J. M.; Costas, M. Angew. Chem., Int. Ed. 2016, 55, 5776−
5779. (b) Canta, M.; Font, D.; Gomez, L.; Ribas, X.; Costas, M. Adv.
(
́
O.; Ribas, X.; Klein
Plots of k vs substrate concentration for the reactions
obs
́
•
́
Synth. Catal. 2014, 356, 818−830. (c) Gomez, L.; Garcia-Bosch, I.;
Company, A.; Benet-Buchholz, J.; Polo, A.; Sala, X.; Ribas, X.; Costas,
M. Angew. Chem., Int. Ed. 2009, 48, 5720−5723.
AUTHOR INFORMATION
■
(17) (a) Liu, W.; Groves, J. T. Acc. Chem. Res. 2015, 48, 1727−1735.
(b) Huang, X.; Cheng, M.-J.; Nielsen, R. J.; Goddard, W. A., III;
*
Groves, J. T. J. Am. Chem. Soc. 2015, 137, 5300−5303. (c) Liu, W.;
Huang, X.; Cheng, M.-J.; Nielsen, R. J.; Goddard, W. A.; Groves, J. T.
Science 2012, 337, 1322−1325.
Notes
The authors declare no competing financial interest.
(
18) Ottenbacher, R. V.; Talsi, E. P.; Bryliakov, K. P. ACS Catal.
015, 5, 39−44.
19) (a) Gormisky, P. E.; White, M. C. J. Am. Chem. Soc. 2013, 135,
4052−14055. (b) Bigi, M. A.; Reed, S. A.; White, M. C. J. Am. Chem.
Soc. 2012, 134, 9721−9726. (c) Chen, M. S.; White, M. C. Science
007, 318, 783−787.
20) Das, S.; Incarvito, C. D.; Crabtree, R. H.; Brudvig, G. W. Science
2006, 312, 1941−1943.
2
(
1
ACKNOWLEDGMENTS
Financial support from the Ministero dell’Istruzione dell’Uni-
■
versita
̀
e della Ricerca (MIUR) project 2010PFLRJR (PRIN
2
010-2011) is gratefully acknowledged. We thank Prof. Miquel
2
(
Costas for helpful discussion and Prof. Lorenzo Stella for the
use of a LFP equipment.
(
21) Salamone, M.; Bietti, M. Acc. Chem. Res. 2015, 48, 2895−2903.
REFERENCES
(22) (a) Zou, L.; Paton, R. S.; Eschenmoser, A.; Newhouse, T. R.;
■
Baran, P. S.; Houk, K. N. J. Org. Chem. 2013, 78, 4037−4048.
(
1) (a) Hartwig, J. F.; Larsen, M. A. ACS Cent. Sci. 2016, 2, 281−292.
(b) Chen, K.; Eschenmoser, A.; Baran, P. S. Angew. Chem., Int. Ed.
(
b) Hartwig, J. F. J. Am. Chem. Soc. 2016, 138, 2−24.
2
009, 48, 9705−9708. (c) Chen, K.; Baran, P. S. Nature 2009, 459,
(
(
(
2) Davies, H. M. L.; Morton, D. J. Org. Chem. 2016, 81, 343−350.
3) White, M. C. Science 2012, 335, 807−809.
824−828.
4) (a) Bru
̈
ckl, T.; Baxter, R. D.; Ishihara, Y.; Baran, P. S. Acc. Chem.
(23) Moteki, S. A.; Usui, A.; Zhang, T.; Solorio Alvarado, C. R.;
Maruoka, K. Angew. Chem., Int. Ed. 2013, 52, 8657−8660.
(24) Newhouse, T.; Baran, P. S. Angew. Chem., Int. Ed. 2011, 50,
3362−3374.
Res. 2012, 45, 826−839. (b) Gutekunst, W. R.; Baran, P. S. Chem. Soc.
Rev. 2011, 40, 1976−1991.
(
2
5) (a) Larsen, M. A.; Cho, S. H.; Hartwig, J. F. J. Am. Chem. Soc.
016, 138, 762−765. (b) Larsen, M. A.; Wilson, C. V.; Hartwig, J. F. J.
(25) (a) Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J.
D.; MacMillan, D. W. C. Science 2016, 352, 1304−1308. (b) Jeffrey, J.
L.; Terrett, J. A.; MacMillan, D. W. C. Science 2015, 349, 1532−1536.
Am. Chem. Soc. 2015, 137, 8633−8643. (c) Li, Q.; Liskey, C. W.;
Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 8755−8765. (d) Mkhalid, I.
9
277
J. Org. Chem. 2016, 81, 9269−9278