6154
G. Oksdath-Mansilla, A. B. Pen˜e´n˜ory / Tetrahedron Letters 48 (2007) 6150–6154
2. (a) Seebach, D.; Corey, E. J. J. Org. Chem. 1975, 40, 231–
nadophosphate. No sulfoxidation is observed by
CuSO4 or CuCl2, whereas CuX2 species X ¼ NOꢀ3 ;
BFꢀ4 ; ClOꢀ4 or OTfꢀ (triflate) are active. Okun, N. M.;
Anderson, T. M.; Hardcastle, K. I.; Hill, C. L. Inorg.
Chem. 2003, 42, 6610–6612.
237; (b) Seebach, D. Angew. Chem., Int. Ed. Engl. 1979,
18, 239–258.
3. (a) Smith, A. B., III; Adams, C. M. Acc. Chem. Res. 2004,
´
37, 365–377; (b) Yus, M.; Najera, C.; Fourbelo, F.
Tetrahedron 2003, 59, 6147–6312.
25. With lesser amount of copper salt, the reactions required
longer times to be completed. We have also analyzed a
mixture of Cu(NO3)2 (0.1 equiv) and CuBr2 (0.1 equiv) as
co-oxidant to perform the cleavage of thiolane 1a yielding
similar results.
4. (a) Burghardt, T. E. J. Sulfur Chem. 2005, 26, 411–427; (b)
Banerjee, A. K. Russ. Chem. Rev. 2000, 69, 947–955.
5. Kamata, M.; Otogawa, H.; Hasegawa, E. Tetrahedron
Lett. 1991, 32, 7421–7424.
6. Balogh, M.; Cornelis, A.; Laszlo, P. Tetrahedron Lett.
1984, 25, 3313–3316.
7. Meshram, H. M.; Reddy, G. S.; Yadav, J. S. Tetrahedron
Lett. 1997, 38, 8891–8894.
8. Lee, J. G.; Hwang, J. P. Chem. Lett. 1995, 507–508.
9. Hirano, M.; Ukawa, K.; Yakabe, S.; Clark, J. H.;
Morimoto, T. Synthesis 1997, 858–860.
10. Kamal, A.; Laxman, E.; Reddy, P. S. M. M. Synlett 2000,
1476–1478.
26. Linker, T. In Radicals in Organic Synthesis; Renaud, P.,
Sibi, M., Eds.; Wiley-VCH Verlag GmbH: Weinheim,
2001; Vol. 1, Chapter 2.4, pp 219–228.
27. Kamata, M.; Murukami, Y.; Tamagawa, Y.; Kato, M.;
Hasegawa, E. Tetrahedron 1994, 50, 12821–12828.
28. Schmittel, M.; Langels, A. J. Org. Chem. 1998, 63, 7328–
7337. All potentials are referenced versus the ferrocene/
ferrocenium couple (E1/2 = 0.39 V vs. SCE) (Refs. 11 and
28).
´
29. Penenory, A. B.; Puiatti, M.; Arguello, J. E. Eur. J. Org.
˜ ˜
¨
11. Schmittel, M.; Levis, M. Synlett 1996, 315–316.
12. (a) Desai, U. V.; Pore, D. M.; Tamhankar, B. V.; Jadhav,
S. A.; Wadgaonkar, P. P. Tetrahedron Lett. 2006, 47,
8559–8561; (b) Das, B.; Ramu, R.; Ravinder Reddy, M.;
Mahender, G. Synthesis 2005, 250–254; (c) Langille, N. F.;
Dakin, L. A.; Panek, J. S. Org. Lett. 2003, 5, 575–578; (d)
Crich, D.; Picione, J. Synlett 2003, 1257–1258; (e) Krish-
anaveni, N. S.; Surendra, K.; Nageswar, Y. V. D.; Rao, R.
K. Synthesis 2003, 2295–2297; (f) Khan, A. T.; Mondal,
E.; Sahu, P. R. Synlett 2003, 377–381; (g) Wu, Y.; Shen,
X.; Huang, J. H.; Tang, C. J.; Liu, H. H.; Hu, Q.
Tetrahedron Lett. 2002, 43, 6443–6445; (h) Liu, J.; Wong,
C-H. Tetrahedron Lett. 2002, 43, 4037–4039; (i) Barhate,
N. B.; Shinde, P. D.; Mahajan, V. A.; Wakharkar, R. D.
Tetrahedron Lett. 2002, 43, 6031–6033; (j) Firouzabadi,
H.; Iranpoor, N.; Hazarkhani, H.; Karimi, B. J. Org.
Chem. 2002, 67, 2572–2576; (k) Fleming, F. F.; Funk, L.;
Altundas, R.; Tu, Y. J. Org. Chem. 2001, 66, 6502–6504.
13. Kaupp, G. Top. Curr. Chem. 2005, 254, 95–183.
14. (a) Microwave Assisted Organic Synthesis; Tierney, J. P.,
Lidstrom, P., Eds.; Blackwell: Oxford, UK, 2005; Vol.
280, p 89; (b) Kappe, C. O. Angew. Chem., Int. Ed. 2004,
Chem. 2005, 122–144.
30. The deprotection of the 1,3-dithiolane derivative from the
cinnamaldehyde affords a mixture of cinnamaldehyde and
benzaldehyde. The oxidative cleavage of the cinnamalde-
hyde by Cu(II) was not avoided even at shorter reaction
times.
31. Epox (TMB) = 0.77 V, versus SCE in MeCN (Ref. 5).
32. The absence of reaction in the presence of NH4NO3/K10
only, and the reactivity observed by CuBr2 in our
experimental conditions allow us to attribute the forma-
tion of the sulfide radical cation to a reaction with the
Cu(II) ion. Nevertheless, a co-oxidation by NO2 could not
be entirely disregarded due to the formation of NO2
(brown gas) observed at the end of the reaction. Bosch and
Kochi reported that NO2 can catalyze the O2 oxidation of
sulfides via the formation of an electron donor–acceptor
(EDA) complex ½sulfide;NOþꢁNO3ꢀ, followed by ET to
produce a sulfur radical cation. Bosch, E.; Kochi, J. J.
Org. Chem. 1995, 60, 3172–3183, Further electrochemical
studies are required to elucidate the role of nitrate.
33. Pathway (a) has been proposed for the PET deprotection
of dithiane by pyrilium salts under O2 atmosphere
Kamata, M.; Kato, Y.; Hasegawa, E. Tetrahedron Lett.
1991, 32, 4349-4352; whereas pathway (b) has been
suggested for the dethioacetalization induced by visible
light and dyes (Epling, G. A.; Wang, Q. Tetrahedron Lett.
1992, 33, 5909–5912) and indirect electrochemical oxida-
tion, (Platen, M.; Steckhan, E. Tetrahedron Lett. 1980, 21,
511–514).
´
43, 6250–6284; (c) de la Hoz, A.; Dıaz-Ortiz, A.; Moreno,
A. Chem. Soc. Rev. 2005, 34, 164–178.
15. (a) Cains, P. W.; Martin, P. D.; Price, C. J. Org. Process
Res. Dev. 1998, 2, 34–48; (b) Mason, T. J. Chem. Soc. Rev.
1997, 26, 443–451; (c) Luche, J. L. Ultrason. Sonochem.
1996, 3, S215–S221.
16. Varma, R. S.; Saini, R. K. Tetrahedron Lett. 1997, 38,
2623–2624.
17. Ganguly, N. C.; Datta, M. Synlett 2004, 659–662.
18. Zolfigol, M. A.; Mohammadpoor-Baltork, I.; Khazae, A.;
Shiri, M.; Tanbakouchian, Z. Lett. Org. Chem. 2006, 3,
305–308.
34. Another possibility would be a fast interconversion
between the two distonic radical cations 10 and 8, the
former a carbocation with a thiyl radical, and the latter a
carbon radical with a sulfur cation moiety.
19. Gupta, N.; Sonu; Kad, G. L.; Singh, J. Catal. Commun.
2007, 1323–1328.
20. Habibi, M. H.; Tangestaninejad, S.; Montazerozohori,
M.; Mohamadpoor-Baltork, I. Molecules 2003, 8, 663–
669.
21. Hajipour, A. R.; Mallakpour, S. E.; Mohamadpoor-
Baltork, I.; Adibi, H. Molecules 2002, 7, 674–680.
22. This procedure avoids a previous synthesis of Claycop.
23. However, NH4NO3 supported on K10 (Clayan) has been
reported as a reagent for deprotection of thioacetals and
thioketals, using a ratio substrate/Clayan of 1:7 (Ref. 7).
24. A similar result was reported for the aerobic sulfoxidation
by heterogeneous catalysis with cupric decamolybdodiva-
35. The deprotection of dithianes with Fe(phen)3(PF6) com-
plexes and SbCl5 requires an excess of the oxidant. Thus,
the mechanism proposed to account for this dethioacetal-
ization involves one-electron oxidation of a sulfur radical
to a sulfonium ion as a key step. This intermediate by a
second oxidative ET process affords a dication responsible
for the formation of the ketone. Refs. 11 and 5.
36. Spectral data for 1,3-dithiolane 1m: white solid. Mp
144.5–145.4°C, (petroleum ether). 1H NMR (200 MHz,
CDCl3, 30 °C): d = 1.44–1.51 (m, 3H), 1.59 (d, 2H), 1.71
(s, 2H), 1.92–1.95 (m, 2H), 2.13 (s, 1H), 2.40–2.51 (m, 6H),
2.79–2.83 (m, 4H). 13C NMR (50 MHz, CDCl3, 30 °C):
d = 25.1, 25.7, 26.0, 29.9, 31.4, 38.3, 40.3, 48.0, 57.5, 67.7.